» »

Комбинаторика формулы примеры. Комбинаторика: основные правила и формулы

18.10.2019

Комбинаторикой называется раздел математики, изучающий вопрос о том, сколько комбинаций определенного типа можно составить из данных предметов (элементов).

Правило умножения (основная формула комбинаторики)

Общее число способов, которыми можно выбрать по одному элементу из каждой группы и расставить их в определенном порядке (то есть получить упорядоченную совокупность ), равно:

Пример 1

Монету подбросили 3 раза. Сколько различных результатов бросаний можно ожидать?

Решение

Первая монета имеет альтернативы – либо орел, либо решка. Для второй монеты также есть альтернативы и т.д., т.е. .

Искомое количество способов:

Правило сложения

Если любые две группы и не имеют общих элементов, то выбор одного элемента или из , или из , …или из можно осуществить способами.

Пример 2

На полке 30 книг, из них 20 математических, 6 технических и 4 экономических. Сколько существует способов выбора одной математической или одной экономической книги.

Решение

Математическая книга может быть выбрана способами, экономическая - способами.

По правилу суммы существует способа выбора математической или экономической книги.

Размещения и перестановки

Размещения – это упорядоченные совокупности элементов, отличающиеся друг от друга либо составом, либо порядком элементов.

Размещения без повторений , когда отобранный элемент перед отбором следующего не возвращается в генеральную совокупность. Такой выбор называется последовательным выбором без возвращения, а его результат – размещением без повторений из элементов по .

Число различных способов, которыми можно произвести последовательный выбор без возвращения элементов из генеральной совокупности объема , равно:

Пример 3

Расписание дня состоит из 5 различных уроков. Определите число вариантов расписания при выборе из 11 дисциплин.

Решение

Каждый вариант расписания представляет набор 5 дисциплин из 11, отличающихся от других вариантов как составом, так и порядком следования. поэтому:

Перестановки – это упорядоченные совокупности, отличающиеся друг от друга только порядком элементов. Число всех перестановок множества из элементов равно

Пример 4

Сколькими способами можно рассадить 4 человек за одним столом?

Решение

Каждый вариант рассадки отличается только порядком участников, то есть является перестановкой из 4 элементов:

Размещения с повторениями , когда отобранный элемент перед отбором следующего возвращается в генеральную совокупность. Такой выбор называется последовательным выбором с возвращением, а его результат - размещением с повторениями из элементов по .

Общее число различных способов, которыми можно произвести выбор с возвращением элементов из генеральной совокупности объема , равно

Пример 5

Лифт останавливается на 7 этажах. Сколькими способами могут выйти на этих этажах 6 пассажиров, находящихся в кабине лифта?

Чтобы решение задачи по теории вероятностей было максимально точным и верным, многие недорого заказывают контрольную работу на этом сайте. Подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Купить контрольную работу по теории вероятностей...

Решение

Каждый из способов распределения пассажиров по этажам представляет собой комбинацию 6 пассажиров по 7 этажам, отличающуюся от других комбинаций как составом, так и их порядком. Так как одном этаже может выйти как один, так и несколько пассажиров, то одни и те же пассажиры могут повторяться. Поэтому число таких комбинаций равно числу размещений с повторениями из 7 элементов по 6:

Сочетания

Сочетаниями из n элементов по k называются неупорядоченные совокупности, отличающиеся друг от друга хотя бы одним элементом.

Пусть из генеральной совокупности берется сразу несколько элементов (либо элементы берут последовательно, но порядок их появления не учитывается). В результате такого одновременного неупорядоченного выбора элементов из генеральной совокупности объема получаются комбинации, которые называются сочетаниями без повторений из элементов по .

Число сочетаний из элементов по равно:

Пример 6

В ящике 9 яблок. Сколькими способами можно выбрать 3 яблока из ящика?

Решение

Каждый вариант выбора состоит из 3 яблок и отличается от других только составом, то есть представляет собой сочетания без повторений из 9 элементов:

Количество способов, которыми можно выбрать 3 яблока из 9:

Пусть из генеральной совокупности объема выбирается элементов, один за другим, причем каждый отобранный элемент перед отбором следующего возвращается в генеральную совокупность. При этом ведется запись, какие элементы появились и сколько раз, однако порядок их появления не учитывается. Получившиеся совокупности называются сочетаниями с повторениями из элементов по .

Число сочетаний с повторениями из элементов по :

Пример 7

На почте продают открытки 3 видов. Сколькими способами можно купить 6 открыток?

Это задача на отыскание числа сочетаний с повторениями из 3 по 6:

Разбиение множества на группы

Пусть множество из различных элементов разбивается на групп так, то в первую группу попадают элементов, во вторую - элементов, в -ю группу - элементов, причем . Такую ситуацию называют разбиением множества на группы.

Число разбиений на групп, когда в первую попадают элементов, во вторую - элементов, в k-ю группу - элементов, равно:

Пример 8

Группу из 16 человек требуется разбить на три подгруппы, в первой из которых должно быть 5 человек, во второй – 7 человек, в третьей – 4 человека. Сколькими способами это можно сделать?

Решение

Здесь

Число разбиений на 3 подгруппы:


Излагается понятие геометрического закона распределения дискретной случайной величины и рассматривается пример решения задачи. Приведены формулы математического ожидания и дисперсии случайной величины, распределенной по геометрическому закону.

Комбинаторика — раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или иным условиям, можно составить из заданных объектов.

Комбинаторика возникла в XVI веке. Первые комбинаторные задачи касались азартных игр. Сегодня комбинаторные методы используются для решения транспортных задач, составления планов производства и реализации продукции. Установлены связи между комбинаторикой и задачами линейного программирования, статистики. Комбинаторика используется для составления и декодирования шифров, для решения других проблем теории информации.

Значительную роль комбинаторные методы играют и в чисто математических вопросах — теории групп и их представлений, изучении основ геометрии, неассоциативных алгебр и др.

Пример комбинаторной задачи. Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

I способ. Постараемся выписать все такие числа. На первом месте может стоять любая цифра кроме 0. Например, 2. На втором месте любая цифра из 0, 4, 6 и 8. Пусть 0. Тогда в качестве третьей цифры можно выбрать любую из 4, 6, 8. Получаем три числа

Вместо 0 на второе место можно было поставить 4, тогда третье цифрой можно записать или 0, или 6, или 8:

Рассуждая аналогично, получаем ещё две тройки трёхзначных чисел с цифрой 2 на первом месте:

Других, кроме выписанных 12-ти, трёхзначных чисел с цифрой 2 на первом месте, и удовлетворяющих условию, нет.

Если на первом месте записать цифру 4, а остальные выбирать из цифр 0, 2, 6, 8, то получим ещё 12 чисел:

По столько же трёхзначных чисел можно составить с цифрой 6 на первом месте и цифрой 8 на первом месте. Значит, искомое количество:

Вот эти числа:

204, 206, 208, 240, 246, 248, 260, 264, 268, 280, 284, 286;

402, 406, 408, 420, 426, 428, 460, 462, 468, 480, 482, 486;

602, 604, 608, 620, 624, 628, 640, 642, 648, 680, 682, 684;

802, 804, 806, 820, 824, 826, 840, 842, 846, 860, 862, 864.

Ответ: 48.

Метод рассуждения, которым мы воспользовались при решении предыдущей задачи, называется перебором возможных вариантов .

Правила сложения и умножения

Комбинаторное правило сложения (правило "или") — одно из основных правил комбинаторики, утверждающее, что, если имеется n элементов и элемент A 1 можно выбрать m 1 способами, элемент A 2 можно выбрать m 2 A n можно выбрать m n способами, то выбрать или A 1 , или A 2 , или, и так далее, A n можно

m 1 + m 2 + ... + m n

способами.

Например, выбрать подарок ребёнку из 9 машинок, 7 плюшевых медведей и 3 железных дорог можно

способами.

Ответ: 19.

Правило умножения (правило "и") — ещё одно из важных правил комбинаторики. Согласно ему, если элемент A 1 можно выбрать m 1 способами, элемент A 2 можно выбрать m 2 способами и так далее, элемент A n можно выбрать m n способами, то набор элементов (A 1 , A 2 , ... , A n ) можно выбрать

m 1 · m 2 · ... · m n

способами.

Например.

1) Выбрать ребёнку в подарок машинку, плюшевого медведя и железную дорогу, выбирая из 9 машинок, 7 плюшевых медведей и 3 железных дорог, можно

9 · 7 · 3 = 189

способами.

Ответ: 189.

2) Воспользуемся правилом умножения для решения задачи, уже рассмотренной выше: Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

II способ.

0 не может стоять первым, значит первую цифру нужно выбрать из 2, 4, 6, 8 — 4 способа;

второй цифрой может быть любая из четырёх оставшихся — 4 способа;

третью цифру можно выбрать среди трёх оставшихся — 3 способа.

Итак, искомое количество трёхзначных чисел:

4 · 4 · 3 = 48.

Ответ: 48.

Перестановки

Множество из n элементов называется упорядоченным , если каждому его элементу поставлено в соответствие натуральное число от 1 до n .

Перестановкой из n элементов называется любое упорядоченное множество из n элементов.

Например, из 4 элементов ♦ ♣ ♠ можно составить следующие 24 перестановки:

♦ ♣ ♠
♣ ♠


♦ ♠



♦ ♣ ♠



♦ ♣ ♠
♣ ♠


♦ ♠







Количество перестановок из n элементов принято обозначать P n . С помощью перебора возможных вариантов легко убедиться, в том что

P 1 = 1; P 2 = 2; P 3 = 6; P 4 = 24.

Вообще, число всевозможных перестановок из n элементов равно произведению всех натуральных чисел от 1 до n , то есть n ! (читается "эн факториал"):

P n = 1 · 2 · 3 · ... · (n - 1 ) · n = n !.

Для P n справедлива рекуррентная формула:

P n = n · P n - 1 .

Значение факториала определено не только для натуральных чисел, но и для 0:

0! = 1 .

Таблица факториалов целых чисел от 0 до 10
n
1
2
3
4
5
6
7
8
9
10
n !
1
1
2
6
24
120
720
5 040
40 320
362 880
3 628 800

Например, сколькими способами 5 мальчиков и 5 девочек могут занять в театре места в одном ряду с 1-го по 10-е место, если никакие два мальчика и никакие две девочки не сидят рядом?

Возможны два случая с одинаковым количеством способов: 1) мальчики — на нечётных местах, девочки на чётных и 2) наоборот.

Рассмотрим первый случай. Мальчики по нечётным местам могут сесть

P 5 = 120

способами. Столько способов и для девочек на чётных местах. Согласно правилу умножения, мальчики — на нечётных местах, девочки на чётных могут расположиться

120 · 120 = 14 400

способами. Значит, всего способов

14 400 + 14 400 = 28 800.

Ответ: 28 800.

Перестановки с повторениями

Перестановкой с повторениями из n элементов, среди которых k разных, при этом насчитывается n 1 неразличимых элементов первого типа, n 2 неразличимых элементов второго типа и так далее, n k неразличимых элементов k -го типа (где n 1 + n 2 + … + n k = n ), называется любое расположение этих элементов по n различным местам.

Число перестановок с повторениями длины n из k разных элементов, взятых соответственно по n 1 , n 2 , …, n k раз каждый обозначается и вычисляется следующим образом:$$P_{n_1,n_2, ... , n_k}=\frac{n!}{n_1!n_2! ... n_k!}~.$$

Например, сколько различных десятизначных чисел можно составить из цифр: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4?

В данном случае: n = 10, n 1 = 1, n 2 = 2, n 3 = 3, n 4 = 4,$$P_{1, 2, 3, 4}=\frac{10!}{1!2! 3! 4!}=\frac{10!}{1!2! 3! 4!}=12~600.$$

Ответ: 12 600.

Размещения

Размещением из n элементов по m (m ≤ n) m элементов, взятых в определённом порядке из данных n элементов.

Два размещения из n элементов по m считаются различными, если они различаются самими элементами или порядком их расположения.

Например, составим все размещения из четырёх элементов A, B, C, D по два элемента:

A B; A C;A D;

B A; B C; B D;

C A; C В; C D;

D A; D В; D C.

Число всех размещений из n элементов по m обозначают \(A_n^m\) (читается: "А из n по m ") и вычисляется по любой из формул:$$A_n^m=n\cdot (n-1)\cdot (n-2)\cdot ...\cdot (n-m+1)\\A_n^m=\frac{n!}{(n-m)!}$$

Примеры задач.

1) Воспользуемся понятием размещений из n элементов по m для решения задачи, уже дважды рассмотренной ранее: Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

II I способ.

Первую цифру можно выбрать четырьмя способами из набора 2, 4, 6, 8. В каждом из этих случаев количество пар второй и третей цифры равно числу размещений из 4 оставшихся цифр по 2. Значит искомое количество трёхзначных чисел равно:$$4\cdot A_4^2=4\cdot \frac{4!}{(4-2)!}=4\cdot \frac{4!}{2!}=4\cdot (3\cdot 4)=48.$$Ответ: 48.

2) Для полёта в космос необходимо укомплектовать экипаж из шести человек. В него должны входить: командир корабля, первый и второй его помощники, два бортинженера, один из которых старший, и один врач. Командный состав выбирается из 20 лётчиков, бортинженеры — из 15 специалистов, а врач — из 5 медиков. Сколькими способами можно укомплектовать экипаж?

Поскольку в выборе командного состава важен порядок, то командира и двух его помощников можно выбрать \(A_{20}^3\) способами. Порядок бортинженеров тоже важен, значит, для их выбора существует \(A_{15}^2\) способов. Врач всего один, для его выбора существует 5 способов. Воспользуемся комбинаторным правилом умножения и найдём количество возможных экипажей корабля:$$A_{20}^3\cdot A_{15}^2\cdot 5=\frac{20!}{17!}\cdot \frac{15!}{13!}\cdot 5=(18\cdot 19\cdot 20)\cdot (14\cdot 15)\cdot 5=7~182~000.$$Ответ: 7 182 000.

Понятно, что, если m = n , то$$A_n^m=A_n^n=P_n=n!.$$

Справедливо также, что, если m = n - 1 , то$$A_n^{n-1}=A_n^n=P_n=n!.$$

Размещения с повторениями

Помимо обычных размещений бывают и размещения с повторениями или выборки с возвращением .

Пусть имеется n различных объектов. Выберем из них m штук, действуя по следующему принципу. Возьмём любой, но не будем его устанавливать в какой-то ряд, а просто запишем под номером 1 его название, сам же объект после этого вернём к остальным. Затем опять из всех n объектов выберем один (в том числе, возможно, и тот, который был только что взят), запишем его название, пометив номером 2, и снова вернём объект обратно. И так далее, пока не получим m названий.

Размещения с повторениями обозначаются \(\overline{A}_n^m\) и, согласно правилу умножения, вычисляются по формуле$$\overline{A}_n^m=n^m.$$Заметим, что здесь допустим случай, когда m > n , то есть выбранных объектов больше, чем их всего имеется. Это неудивительно: каждый объект после "использования" возвращается обратно и может быть использован повторно.

Например, количество вариантов шестизначного пароля, в котором каждый знак является цифрой от 0 до 9 или буквой латинского алфавита (одна и та же строчная и прописная буква — один символ) и может повторяться, равно:$$\overline{A}_{10+26}^6=\overline{A}_{36}^6=36^6=2~176~782~336.$$Если же строчные и прописные буквы считаются различными символами (как это обычно и бывает), то количество возможных паролей становится ещё более колоссальным:$$\overline{A}_{10+26+26}^6=\overline{A}_{62}^6=62^6=56~800~235~584.$$

Сочетания

Сочетанием из n элементов по m (m ≤ n) называется любое множество, состоящее из m элементов, выбранных из данных n элементов.

В отличии от размещений в сочетаниях не имеет значения, в каком порядке указаны элементы. Два сочетания из n элементов по m считаются различными, если они различаются хотя бы одним элементом.

Например, составим все сочетания из четырёх элементов A, B, C, D по два элемента:

A B; A C;A D;

B C; B D;

C D .

Число всех сочетаний из n элементов по m обозначают \(C_n^m\) (читается: "C из n по m ") и вычисляется по любой из формул:$$C_n^m=\frac{A_n^m}{P_m}$$$$C_n^m=\frac{n\cdot (n-1)\cdot (n-2)~\cdot~ ...~\cdot~ (n-m+1)}{1\cdot2\cdot3~\cdot~...~\cdot ~m}$$$$C_n^m=\frac{n!}{m!\cdot (n-m)!}.$$

Примеры задач.

1) Бригада, занимающаяся ремонтом школы, состоит из 12 маляров и 5 плотников. Из них для ремонта физкультурного зала надо выделить 4 маляров и 2 плотников. Сколькими способами можно это сделать?

Так как порядок маляров в каждой выбранной четвёрке и порядок плотников в каждой выбранной паре не имеет значения, то, согласно комбинаторному правилу умножения, искомое количество способов равно:$$C_{12}^4 \cdot C_5^2 =\frac{12!}{4!\cdot 8!}\cdot \frac{5!}{2!\cdot 3!}=\frac{9\cdot10\cdot11\cdot12}{1\cdot2\cdot3\cdot4}\cdot \frac{4\cdot5}{1\cdot 2}=4~950.$$Ответ: 4 950.

2) В классе обучаются 30 учащихся, среди которых 13 мальчиков и 17 девочек. Сколькими способами можно сформировать команду из 7 учащихся этого класса, если в неё должна входить хотя бы одна девочка?

Количество всех возможных команд по 7 человек из класса равно \(C_{30}^7\). Количество команд в которых только мальчики — \(C_{13}^7\). Значит, количество команд, в которых есть хотя бы одна девочка, равно:$$C_{30}^7 - C_{13}^7 =\frac{30!}{7!\cdot 23!} - \frac{13!}{7!\cdot 6!}=2~035~800-1~716=2~034~084.$$Ответ: 2 034 084.

Сочетания с повторениями

Помимо обычных сочетаний рассматривают сочетания с повторениями .

Пусть в множестве имеется n объектов. Выберем из них m штук, действуя по следующему принципу. Возьмём любой, но не будем его устанавливать в какой-то ряд, а просто запишем, сам же объект после этого вернём к остальным. Затем опять из всех n объектов выберем один (в том числе, возможно, и тот, который был взят и записан ранее), запишем его название и снова вернём объект обратно. И так далее, пока не получим m названий.

Принципиальное отличие от размещений с повторениями заключается в том, что в данном случае элементы списка не нумеруются. Например, список "A, С, A, В" и список "А, А, В, С" считаются одинаковыми.

Сочетания с повторениями обозначаются \(\overline{C}_n^m\) и вычисляются по формуле$$\overline{C}_n^m=P_{m,~n-1}=\frac{(m+n-1)!}{m!\cdot (n-1)!}.$$И ещё один способ записи той же формулы:$$\overline{C}_n^m=C_{m+n-1}^m=\frac{(m+n-1)!}{m!\cdot (n-1)!}.$$Заметим, что подобно размещениям с повторениями, допустим случай, когда m > n , то есть выбранных объектов больше, чем их всего имеется. Действительно, каждый объект после "использования" возвращается обратно и может быть использован снова и снова.

Например, выясним сколькими способами можно купить 7 пирожных в кондитерском отделе, если в продаже 4 их сорта?

Естественно полагать, что количество пирожных каждого вида не меньше 7, и при желании можно купить только пирожные одного из них. Так как порядок в котором кладут купленные пирожные в коробку не важен, то имеем дело с сочетаниями с повторениями. Так как нужно выбрать 7 пирожных из 4 его видов, то искомое количество способов равно:$$\overline{C}_4^7=\frac{(7+4-1)!}{7!\cdot (4-1)!}=\frac{10!}{7!\cdot 3!}=\frac{8\cdot 9\cdot 10}{1\cdot 2\cdot 3}=120.$$

Ответ: 120.

Бином Ньютона и биномиальные коэффициенты

Равенство$$(x+a)^n=C_n^0x^na^0+C_n^1x^{n-1}a^1+...+C_n^mx^{n-m}a^m+...+C_n^nx^0a^n$$называют биномом Ньютона или формулой Ньютона . Правая часть равенства называется биномиальным разложением в сумму , а коэффициенты \(C_n^0,~C_n^1,~...~,~C_n^n\) — биномиальными коэффициентами .

Свойства биномиальных коэффициентов:

\(~~~~~~~~1.~~C_n^0=C_n^n=1\\ ~~~~~~~~2.~~C_n^m=C_n^{n-m}\\ ~~~~~~~~3.~~C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m}\\ ~~~~~~~~4.~~C_n^0+C_n^1+C_n^2+~...~+C_n^n=2^n\\ ~~~~~~~~5.~~C_n^0+C_n^2+C_n^4+~... =C_n^1+C_n^3+C_n^5+~...=2^{n-1}\\ ~~~~~~~~6.~~C_n^n+C_{n+1}^n+C_{n+2}^n+~...~+C_{n+m-1}^n=C_{n+m}^{n+1}\\ \)

Свойства биномиального разложения:

1. Число всех членов разложения на единицу больше показателя степени бинома,

то есть равно n + 1 .

2. Сумма показателей степеней x и a каждого члена разложения равна показателю степени бинома,

то есть (n - m) + m = n .

3. Общий член разложения (обозначается T n +1 ) имеет вид$$T_{n+1}=C_n^m x^{n-m}a^m,~~~~m=0,~1,~2,~...~,~n.$$

Треугольник Паскаля

Все возможные значения биномиальных коэффициентов (числа сочетаний) для каждого показателя степени бинома n можно записать в виде бесконечной треугольной таблицы. Такая таблица называется треугольником Паскаля:






\(C_0^0\)









\(C_1^0\)

\(C_1^1\)







\(C_2^0\)

\(C_2^1\)

\(C_2^2\)





\(C_3^0\)

\(C_3^1\)

\(C_3^2\)

\(C_3^3\)



\(C_4^0\)

\(C_4^1\)

\(C_4^2\)

\(C_4^3\)

\(C_4^4\)

\(C_5^0\)

\(C_5^1\)

\(C_5^2\)

\(C_5^3\)

\(C_5^4\)

\(C_5^5\)

. . .



. . .



. . .

В этом треугольнике крайние числа в каждой строке равны 1. Действительно, \(C_n^0=C_n^n=1\). А каждое не крайнее число равно сумме двух чисел предыдущей строки, стоящих над ним: \(C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m}\).

Таким образом, этот треугольник предлагает ещё один (рекуррентный) способ вычисления чисел \(C_n^m\):

n = 0








1








n = 1







1

1







n = 2






1

2

1






n = 3





1

3

3

1





n = 4




1

4

6

4

1




n = 5



1

5

10

10

5

1



n = 6


1

6

15

20

15

6

1


n = 7

1

7

21

35

35

21

7

1

n = 8
1

8

28

56

70

56

28

8

1
...



...



...

...



...



Сочетания. Размещения. Перестановки

Перестановками называют комбинации, состоящие из одних и тех же n различных элементов и отличающиеся только порядком их расположения. Число всех возможных перестановок

Рассмотрим пример : сколько трехзначных чисел можно составить из цифр 1,2,3, если каждая цифра входит в изображение числа только один раз?

Решение:

Или такой пример . Порядок выступления семи участников на студенческой конференции определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?

Решение: каждый вариант жеребьевки отличается только порядком участников, то есть является перестановкой из 7 элементов. Их число находится

Пример. К кассе за получением денег подошли одновременно 4 человека. Сколькими способами они могут выстроиться в очередь?

Решение: очередь состоит из 4 различных лиц, поэтому в каждом способе составления очереди учитывается порядок их расположения. Таким образом, имеют место перестановки из четырех человек, их число равно

Размещениями n различных элементов по m элементов, которые отличаются либо их порядком, либо составом элементов.

Число всех возможных размещений рассчитывается

Пример: сколько можно составить сигналов из 6 флажков различного цвета, взятых по два?

Решение:

Пример: расписание одного дня состоит из пяти уроков. Определить число вариантов расписания при выборе из 11 дисциплин.

Решение: каждый вариант расписания представляет набор 5 дисциплин из 11, отличающийся от других вариантов, как составом дисциплин, так и порядком их следования, то есть является размещением из 11 элементов по 5. Число вариантов расписания находят по формуле

Сочетаниями называют комбинации, составленные из n различных элементов по m элементов, которые отличаются хотя бы одним элементом. Число сочетаний

Пример: сколькими способами можно выбрать 2 детали из ящика, содержащего 10 деталей?

Решение:

Пример: в шахматном турнире участвуют 16 человек. Сколько партий должно быть сыграно в турнире, если между любыми двумя участниками должна быть сыграна одна партия?

Решение: каждая партия играется двумя участниками из 16 и отличается только составом пар участников, то есть представляет собой сочетание из 16 элементов по два

Пример: имеется 6 штаммов бактерий. Для определения скорости их роста необходимо выбрать три штамма. Сколькими способами можно это сделать?

Решение: способы отбора считаются различными, если каждый отобранный штамм различается хотя бы одним элементом. Это число

То есть имеется 20 способов.

Подчеркнем, что числа размещений, перестановок и сочетаний связаны равенством

При решении задач комбинаторики используют следующие правила.

Правило суммы: если некоторый объект A может быть выбран из совокупности объектов m способами, а другой объект В может быть выбран n способами, то выбрать либо А , либо В можно способами.

Правило произведения: если объект А можно выбрать из совокупности объектов m способами и после каждого такого выбора объект В можно выбрать n способами, то пара объектов (А,В) в указанном порядке может быть выбрана способами.

Перестановка – это комбинация элементов из N разных элементов взятых в определенном порядке. В перестановке важен порядок следования элементов, и в перестановке должны быть задействованы все N элементов.

Задача : Найти все возможные перестановки для последовательности чисел 1, 2, 3.
Существуют следующие перестановки:

1: 1 2 3
2: 1 3 2
3: 2 1 3
4: 2 3 1
5: 3 1 2
6: 3 2 1

Перестановки без повторений

Количество перестановок для N различных элементов составляет N! . Действительно:

  • на первое место может быть помещен любой из N элементов (всего вариантов N ),
  • на вторую позицию может быть помещен любой из оставшихся (N-1) элементов (итого вариантов N·(N-1) ),
  • если продолжить данную последовательность для всех N мест, то получим: N·(N-1)·(N-2)· … ·1 , то есть всего N! перестановок.

Рассмотрим задачу получения всех перестановок чисел 1…N (то есть последовательности длины N ), где каждое из чисел входит ровно по 1 разу. Существует множество вариантов порядка получения перестановок. Однако наиболее часто решается задача генерации перестановок в лексикографическом порядке (см. пример выше). При этом все перестановки сортируются сначала по первому числу, затем по второму и т.д. в порядке возрастания. Таким образом, первой будет перестановка 1 2 … N , а последней — N N-1 … 1 .

Рассмотрим алгоритм решения задачи. Дана исходная последовательность чисел. Для получения каждой следующей перестановки необходимо выполнить следующие шаги:

  • Необходимо просмотреть текущую перестановку справа налево и при этом следить за тем, чтобы каждый следующий элемент перестановки (элемент с большим номером) был не более чем предыдущий (элемент с меньшим номером). Как только данное соотношение будет нарушено необходимо остановиться и отметить текущее число (позиция 1).
  • Снова просмотреть пройденный путь справа налево пока не дойдем до первого числа, которое больше чем отмеченное на предыдущем шаге.
  • Поменять местами два полученных элемента.
  • Теперь в части массива, которая размещена справа от позиции 1 надо отсортировать все числа в порядке возрастания. Поскольку до этого они все были уже записаны в порядке убывания необходимо эту часть подпоследовательность просто перевернуть.

Таким образом мы получим новую последовательность, которая будет рассматриваться в качестве исходной на следующем шаге.

Реализация на С++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#include
using namespace std;

{
int s = a[i];
a[i] = a[j];
a[j] = s;
}
bool NextSet(int *a, int n)
{
int j = n - 2;
while (j != -1 && a[j] >= a) j--;
if (j == -1)
return false; // больше перестановок нет
int k = n - 1;
while (a[j] >= a[k]) k--;
swap(a, j, k);
int l = j + 1, r = n - 1;
while (l swap(a, l++, r--);
return true;
}
void Print(int *a, int n) // вывод перестановки
{
static int num = 1; // номер перестановки
cout.width(3);
cout << num++ << ": " ;
for (int i = 0; i < n; i++)
cout << a[i] << " " ;
cout << endl;
}
int main()
{
int n, *a;
cout << "N = " ;
cin >> n;
a = new int [n];
for (int i = 0; i < n; i++)
a[i] = i + 1;
Print(a, n);
while (NextSet(a, n))
Print(a, n);
cin.get(); cin.get();
return 0;
}

Результат выполнения

Перестановки с повторениями

Особого внимания заслуживает задача генерации перестановок N элементов в случае если элементы последовательности могут повторяться. Допустим, исходная последовательность состоит из элементов n 1 , n 2 ... n k , где элемент n 1 повторяется r 1 раз, n 2 повторяется r 2 раз и т.д. При этом n 1 +n 2 +...+n k =N . Если мы будем считать все n 1 +n 2 +...+n k элементов перестановки с повторениями различными, то всего различных вариантов перестановок (n 1 +n 2 +...+n k)! . Однако среди этих перестановок не все различны. В самом деле, все r 1 элементов n 1 мы можем переставлять местами друг с другом, и от этого перестановка не изменится. Точно так же, можем переставлять элементы n 2 , n 3 и т. д. В итоге имеем r 1 ! вариантов записи одной и той же перестановки с различным расположением повторяющихся элементов n 1 . Таким образом, всякая перестановка может быть записана r 1 !·r 2 !·...·r k ! способами. Следовательно, число различных перестановок с повторениями равно

Для генерации перестановок с повторениями можно использовать алгоритм генерации перестановок без повторений, приведенный выше. Введем повторяющийся элемент в массив a. Ниже приведен код программы для генерации перестановок с повторениями (изменен только код функции main() ).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

#include
using namespace std;
void swap(int *a, int i, int j)
{
int s = a[i];
a[i] = a[j];
a[j] = s;
}
bool NextSet(int *a, int n)
{
int j = n - 2;
while (j != -1 && a[j] >= a) j--;
if (j == -1)
return false; // больше перестановок нет
int k = n - 1;
while (a[j] >= a[k]) k--;
swap(a, j, k);
int l = j + 1, r = n - 1; // сортируем оставшуюся часть последовательности
while (l swap(a, l++, r--);
return true;
}
void Print(int *a, int n) // вывод перестановки
{
static int num = 1; // номер перестановки
cout.width(3); // ширина поля вывода номера перестановки
cout << num++ << ": " ;
for (int i = 0; i < n; i++)
cout << a[i] << " " ;
cout << endl;
}
int main()
{
int n, *a;
cout << "N = " ;
cin >> n;
a = new int [n];
for (int i = 0; i < n; i++)
a[i] = i + 1;
a = 1; // повторяющийся элемент
Print(a, n);
while (NextSet(a, n))
Print(a, n);
cin.get(); cin.get();
return 0;
}

Результат работы приведенного выше алгоритма:

Рассмотрим множество А = {а1, а2,..., аn}, содержащее n различных элементов, которое будем называть n-множеством
или генеральной совокупностью объема n. Из n-множества можно образовать его части (подмножества).
Определение. Подмножество, состоящее из m элементов n-множества, называют m-подмножеством n-множества или со-
единением из n элементов по m, или выборкой объема m из генеральной совокупности объема n.
Возможны два способа выбора:

1. Выбор без возвращения, при котором однажды выбранный элемент удаляется из генеральной совокупности. Выборка
(соединение) в этом случае не содержит повторяющихся элементов.

2. Выбор с возвращением, при котором выбор производится каждый раз из всей генеральной совокупности, то есть перед
следующим выбором предыдущий выбранный элемент возвращается в генеральную совокупность. В выборке (соединении) в
этом случае встречаются повторения.

Какие выборки одного и того же объема считать различными и какие одинаковыми, зависит от правил выбора соедине-
ния (подмножества, выборки).
Два соединения могут отличаться либо 1) составом, если они содержат хотя бы по одному различному элементу, либо
2) порядком входящих элементов.
В зависимости от правил выбора соединения делят на три типа: размещения, перестановки, сочетания. В зависимости от
способа выбора (без возвращения или с возвращением) каждый тип соединения может быть без повторений или с повторениями.

2. Размещения без и с повторениями.

Классической задачей комбинаторики является задача о числе размещений без повторений, содержание которой можно
выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n различных предметов?
Также классической задачей комбинаторики является задача о числе размещений с повторениями, содержание которой
можно выразить вопросом: сколькими способами можно выбрать и разместить по m различным местам m из n предметов,
среди которых есть одинаковые?

Определение. Размещениями из n элементов по m называются соединения из n элементов по m, которые отличаются
друг от друга либо своими элементами (составом), либо порядком их расположения.

На языке теории множеств это звучит следующим образом: размещения из n элементов по m – это упорядоченное
m-подмножество n-множества (упорядоченная m-выборка из генеральной совокупности объема n). Термин «упорядоченная»
означает, что порядок следования элементов в выборке существенен: выборки с одними и теми же элементами, но с разным
порядком их следования различны.

Задача . Пусть имеется множество, содержащее 4 буквы:
{А, B, C, D}. Записать все возможные размещения из 4 указанных букв по две:

а) без повторений;

б) с повторениями.

Решение.

а) Таких размещений 12: (АВ), (AC), (АD), (ВС),(ВD), (BA), (CA), (CB), (СD), (DА), (DВ), (DС). Заметим, что
размещения отличаются порядком входящих в них элементов и их составом. Размещения АВ и ВА содержат одинаковые буквы,
но порядок их расположения различен.
б) Таких размещений 16. К приведенным для случая (а)
размещениям добавляются размещения из одинаковых элементов (АА), (BB), (CC), (DD).

Задача . Пусть имеется множество, содержащее 2 буквы:{A, B}. Записать все возможные размещения с повторениями из
4-х букв.
Решение. Таких размещений 16: (AAAA), (BBBB), (AAAB),(AABA), (ABAA), (BAAA), (AABB), (ABAB), (BABA), (BBAA), (ABBA),
(BAAB), (BBBA), (BBAB), (BABB), (ABBB).

Теорема 3. 3.1 Число различных размещений без повторений из n элементов по m равно

для выборки без возвращения.

3.2 Число размещений с повторениями из n элементов по m равноm (2) для выборки с возвращением.

Доказательство. Для доказательства воспользуемся пра- вилом умножения.

Рассмотрим выборки без возвращения. Для выбора первого элемента имеется n возможностей, второго – (n – 1)

(перед вторым выбором в генеральной совокупности ос- талось (n –1) элементов),..., при m-ом выборе (n – m + 1) воз- можностей.

Таким образом, по правилу умножения

Запишем выражение в более удобном виде, умножив и разделив его на (m – n)!

Считается, что 0! = 1, что позволяет использовать эту формулу для случая m = n.

Рассмотрим выборки с возвращением . Для выбора первого элемента имеется n возможностей, второго – тоже n (перед выбо-
ром очередного элемента предыдущий выбранный элемент зафиксирован и возвращен в генеральную совокупность), при m-м вы-
боре тоже n возможностей. Таким образом .

Задача . В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить четыре фотографии.

Сколькими способами можно это сделать, если ни одна страница газеты не должна содержать более одной фотографии?
Решение . В данной задаче генеральной совокупностью являются 12 страниц газеты, и выборкой без возвращения 4 выбранные из них страницы для фотографий. В данной задаче важно не только то, какие выбраны страницы, но и в каком порядке (для расположения фотографий). Таким образом, задача сводится к классической задаче об определении числа размещений без повторений из 12 элементов по 4 элемента:

Таким образом, 4 фотографии на 12 страницах можно расположить 11880 способами.

Задача . У мальчика остались от набора для настольной игры штампы с цифрами 1, 3 и 7. Он решил с помощью этих
штампов нанести на все книги пятизначные номера – составить каталог. Сколько различных пятизначных номеров может со-
ставить мальчик?
Решение. Можно считать, что опыт состоит в 5-кратном выборе с возращением одной из 3 цифр {1, 3, 7}. Таким образом, число пятизначных номеров определяется числом размещений с повторениями из 3 элементов по 5:

3. Перестановки без повторений
Классической задачей комбинаторики является задача о числе перестановок без повторения, содержание которой можно
выразить вопросом: сколькими способами можно разместить n различных предметов на n различных местах?
Определение. Размещения, в которых участвуют все n элементов генеральной совокупности, называются перестанов-
ками без повторений из n элементов. Перестановки состоят из одних и тех же элементов, но отличаются между собой порядком.

Задача . Пусть имеется множество букв {A, B, C}. Записать все возможные перестановки.
Решение. Этому множеству букв соответствует 6 перестановок: (АВС), (ACB), (BAC), (BCA), (CBA), (CAB).

Теорема . Число перестановок n различных элементов равно n!, т. е. Рn = n!

Доказательство. Так как перестановки являются частным случаем размещений, то при n = m получаем

Замечание. При больших n для подсчета факториала исполь- зуют таблицу логарифмов факториалов либо приближенную формулу Стирлинга

Задача . Сколько можно составить четырехбуквенных «слов» из букв слова «брак»?

Решение . Генеральной совокупностью являются 4 буквы слова «брак» {б, р, а, к}.

Число «слов» определяется перестановками этих 4 букв, т. е. Р4 = 4! = 1 x 2 x 3 x 4 = 24.

Задача . Сколькими способами можно расставить девять различных книг на полке, чтобы определенные четыре книги стояли рядом?

Решение . В исходной генеральной совокупности – 9 разных книг.

Тогда для остальных 6 книг существует Р6 = 6! = 720 перестановок.

Однако четыре определенные книги можно переставить между собой Р4 = 4! = 24 способами.

По правилу умножения имеем Р6 x Р4 = 720 x 24 = 17280.

4. Перестановки с повторениями
Для случая, когда среди выбираемых n элементов есть одинаковые (выборка с возвращением), задачу о числе перестановок с повторениями можно выразить вопросом: сколькими способами можно переставить n предметов, расположенных на
n различных местах, если среди n предметов имеются k различных типов (k < n), т. е. есть одинаковые предметы.

Определение. Перестановками с повторениями называются соединения из генеральной совокупности, каждое из которых содержит n элементов, среди которых элемент

а1 повторяется n1 раз,
а2 повторяется n2 раз,
. . . . . . . . . . . . . . . . . . .
аn повторяется nk раз
n1 + n2 + ... + nk = n
и которые отличаются друг от друга только порядком расположения различных элементов.

Теорема. Число перестановок с повторениями

Доказательство. Доказательство очевидно, так как перестановки одинаковых элементов в перестановке с повторениями не дают новой перестановки.

Задача .

Сколько разных буквосочетаний можно сделать из букв слова «Миссисипи»?

Решение. Здесь 1 буква «м», 4 буквы «и», 3 буквы «c» и 1 буква «п», всего 9 букв.

Следовательно, число перестановок с повторениями равно

5. Сочетания без повторений
Классической задачей комбинаторики является задача о числе сочетаний без повторений, содержание которой можно выразить вопросом: сколькими способами можно выбрать m из п различных предметов?
Определение. Сочетаниями из n различных элементов по m называются соединения из n элементов по m (m <=n), которые
отличаются друг от друга только составом элементов.

Задача. Пусть имеется множество, содержащее 4 буквы {A, B, C, D}. Запишем все возможные сочетания из указанных
букв по 3.
Решение. Таких сочетаний 4: ABC, ACD, ABD, BCD.
Здесь в число сочетаний не включены, например, АСВ,ВСА, так как они не отличаются по составу от последовательно-
сти букв АВС, потому что перестановка элементов нового сочетания не дает.

Теорема. Число сочетаний из n элементов по m равно

Доказательство.

Вспомним, что и сочетания, и размещения из n элементов по m – это выборки объема m из генеральной совокупности объема n и разница между ними в том, что в случае размещений важен и состав, и порядок элементов, тогда как в случае сочетаний важен только состав элементов. Пусть имеется какое-то одно сочетание. Для того, чтобы образовать все размещения с такими же элементами, нужно осуществить всевозможные перестановки элементов этого сочетания. Поскольку в сочетании m элементов, то существует m! перестановок. Следовательно, одному сочетанию, состоящему из m элементов, соответствует m! размещений с этими элементами. Поэтому

Числа называются биномиальными коэффициентами: они являются коэффициентами в разложении бинома Ньютона

Задача . Необходимо выбрать в подарок 4 из 10 имеющих- ся различных книг. Сколькими способами можно это сделать?

Решение . Генеральной совокупностью является 10 раз- личных книг. Из них нужно выбрать 4, причем порядок выбора книг не играет роли. Нужно найти число сочетаний из 10 элементов по

Задача . Имеется 10 белых и 5 черных шаров. Сколькими способами можно выбрать 7 шаров, чтобы среди них были 3 черных?

Решение . Имеем 15 шаров: 10 белых и 5 черных. Нужно выбрать 7 шаров: 4 белых и 3 черных.

Разобьем 15 шаров на 2 генеральные совокупности:

1) 10 белых шаров;

2) 5 черных шаров.

4 белых шара будем выбирать из I генеральной совокупности, порядок выбора безразличен, их можно выбрать

Способами. 3 черных шара будем выбирать из II генеральной совокупности, их можно выбрать

Способами.

Тогда по правилу умножения искомое число способов равно .

Решение этой задачи можно схематически представить следующим образом

Задача . Десять команд участвуют в розыгрыше первенства по футболу, лучшие из которых занимают 1-е, 2-е и 3-е место.

Две команды, занявшие последние места, не будут участвовать в следующем таком же первенстве.

Сколько разных вариантов результата первенства может быть, если учитывать только положение первых трех и последних двух команд.

Решение . Имеется генеральная совокупность объема 10 команд. Из нее будем выбирать 5 команд в 2 этапа:

1) сначала на первые 3 места из 10 с учетом состава и порядка команд;

2) затем на последние 2 места из оставшихся 7 с учетом только состава (порядок выбывших команд не важен).

Первые 3 места могут быть распределены способами.

Число способов исключить 2 команды из оставшихся 7 равно .

Согласно правилу умножения получаем, что число разных результатов неравенства равно 0.

Задача .

Сколько существует вариантов опроса 11 учащихся на одном занятии, если ни одни из них не будет подверг нут опросу дважды и на занятии может быть опрошено любое количество учащихся, причем порядок, в котором опрашивают- ся учащиеся, безразличен?

Решение .

I способ. Имеется генеральная совокупность объема 11 учащихся. Преподаватель может не опросить ни одного из 11 учащихся, что является одним из вариантов. Этому случаю соответствует . Преподаватель может опросить только одного из учащихся, таких вариантов .

Если преподаватель опросит двух учащихся, то число вариантов опроса . Для опроса трех учащихся существует вариантов и т. д.

Наконец, могут быть опрошены все учащиеся. Число вариантов в этом случае .

Число всех возможных вариантов опроса можно найти по пра- вилу сложения

Решение этой задачи можно схематически представить следующим образом:

II способ. Имеется генеральная совокупность, состоящая из 2 элементов:

{а, в}, где а – ученик опрошен, в – ученик не опрошен на данном занятии.

Опыт состоит в 11-кратном выборе с возвращением одного из элементов этого множества – каждый из 11 учеников либо опрошен, либо не опрошен.

В данной задаче важно не только то, какие выбраны элементы множества (сколько учеников опрошено и сколько нет),

но и в каком порядке (т. е. какой именно ученик опрошен или нет).

Число способов такого выбора определяется числом размещений с повторениями из 2 элементов по 11; .

6. Сочетания с повторениями
Рассмотрим задачу о числе сочетаний с повторениями:
имеется по r одинаковых предметов каждого из n различных типов;

сколькими способами можно выбрать m (m <= r) из этих (n x r) предметов?

Определение . Сочетаниями с повторениями называются соединения из n элементов по m (выбор с возвращением m элементов), которые отличаются только составом и при этом отдельные соединения могут содержать повторяющиеся элементы.

Задача . Имеются 2 буквы А, 2 буквы В, 2 буквы С. Сколькими способами можно выбрать две из этих шести букв?
Решение. Существует 6 способов выбора 2 букв из 6 с повторениями: (АА), (AB), (AC), (BC), (BB), (CC). Порядок следо-
вания букв не учитывается.

Теорема . Число сочетаний с повторениями равно

Доказательство. Пусть имеются предметы n различных типов. Сколько соединений по m элементов можно из них сделать, если не принимать во внимание порядок элементов. Расположим в каждом сочетании элементы по типам (сначала все элементы 1-го типа, потом 2-го и т. д.). После этого перенумеруем все элементы в сочетании, но к номерам элементов второ- го типа прибавим 1, третьего типа – 2 и т. д. Тогда из каждого сочетания с повторениями получится сочетание без повторений, состоящее из чисел 1, 2,..., n + m – 1, причем в каждое сочетание входит m элементов.

Отсюда следует, что

Задача . В технической библиотеке имеются книги по ма- тематике, физике, химии и т. д., всего по 16 разделам науки.

Поступили очередные 4 заказа на литературу. Сколько сущест- вует вариантов такого заказа?

Решение. Так как 4 заказанные книги могут быть и из одно- го раздела науки, и из разных разделов, при этом порядок выбора разделов не важен, то число вариантов заказа определяется чис- лом сочетаний с повторениями из 16 элементов по 4, т. е.

Задача . В кондитерском магазине продавались 4 сорта пирожных: наполеоны, эклеры, песочные и слоеные. Сколькими способами можно купить 7 пирожных?

Решение . Очевидно, что порядок, в котором выбираются пирожные, не существен, причем в комбинации могут входить повторяющиеся элементы (например, можно купить 7 эклеров). Следовательно, число способов покупки 7 пирожных определяется числом сочетаний с повторениями из 4 элементов по 7, т. е

7. Комбинаторика разбиений

Рассмотрим в этом классе задач две следующие задачи:

1. Даны n различных предметов и k различных групп. Сколькими способами можно распределить n различных предметов по k различным группам, если допускаются пустые группы. Ниже покажем, что число способов равно k^n .

2. Даны n различных предметов и k различных групп. Сколькими способами можно распределить n различных пред- метов по k группам, если в первой группе n1 предметов, во второй – n2 , в k-й – nk , где n1 + n2 +... + nk = n . Ниже покажем, что число способов равно

Рассмотрим решение первой задачи. Пусть генеральной совокупностью будет k различных групп {1, 2,..., k}. Можно считать, что опыт состоит в n-кратном выборе с возвращением номера группы для каждого предмета. Заметим, что поскольку предметы разные, то важно не только, какие группы выбираются для предметов, но и в каком порядке выбираются эти группы. Таким образом, число способов раз- бить n различных предметов на k групп определяется числом размещений с повторениями и k элементов по n:

Рассмотрим решение второй задачи.

Разбиение n предметов по k группам можно выполнить следующим образом. Сначала положим все n предметов в ряд. После этого возьмем первые n1 предметов и поместим их в первую группу, вторые n2 предмета – во вторую группу, ..., последние nk предметов в k-ю группу. Ясно, что меняя положение предметов в ряду, можно получить всевозможные разбиения предметов. Так как число перестановок из n элементов равно n!, то число расположения предметов в ряд равно n! При этом заметим, что любая перестановка первых n1 предметов ничего не меняет, так же как и вторых n2, ..., и последних nk. В силу правила произведения получим n1!n2!...nk! перестановок предметов, не меняющих результата раздела. Таким образом, число способов разбиения на группы равно

Формула совпадает с формулой для числа перестановок с повторениями. К этому же результату можно прийти иначе. Первые n1 предметов выбираем из n предметов. Так как порядок выбранных предметов безразличен, то имеет выборов. После этого следующие n2 предмета выбираем из оставшихся n – n1. Это можно сделать способами, и т. д.

Наконец, последние nk предметов выбираем из оставшихся nk. Это можно сделать , т. е. единственным способом. По правилу произведения получаем, что число способов разбиения на группы равно

Как видим, задачи о разбиениях привели к уже известным формулам комбинаторики.

Задача. 7 одинаковых шариков случайным образом рас- сыпаются по 4 лункам (в одну лунку может поместиться любое число шаров). Сколько существует различных способов распре- деления 7 шариков по 4 лункам?

Решение. Мы имеем 7 шариков, которые распределяем по 4 лункам (лунки могут быть пустые), т. е. это соответствует первой задаче о разбиениях, число способов равно 4^7 = 16348

Задача. При игре в домино 4 игрока делят поровну 28 костей. Сколькими способами они могут это сделать?

Решение. Это задача о разделе 28 костей между 4 игрока- ми по 7 костей. Используя полученную выше формулу для числа способов такого раздела (задача 2), имеем

8. Рекомендации по решению задач
Решение комбинаторных задач представляет известную трудность для начинающих. Причин много, но одна из них очевидна – при изложении комбинаторики используется своя специфическая терминология (генеральная совокупность, выборка, правила выбора). В задаче же этих терминов, как правило, нет –сформулирована она на обычном литературном языке и комби-

наторные понятия присутствуют в ней в неявной форме. Поэтому после усвоения содержания задачи нужно ее «перевести»
на математический язык.
Для этого необходимо выяснить,
1) что является генеральной совокупностью - она всегда будет присутствовать в задаче, т. е. комбинаторные задачи свя-
заны с выбором объектов, а этот выбор из чего-то (генеральной совокупности) производится; каков объем генеральной сово-
купности;
2) одна или несколько генеральных совокупностей;
3) что является выборкой и каков объем выборки;
4) правила выбора: допустимы или нет повторы, важен ли порядок выбираемых элементов, возможно ли изменение состава.
После этого полезно для себя переформулировать задачу на языке генеральных совокупностей и выборок. В зависимости
от ситуации выбрать нужную формулу (см. таблицу). Иногда в более сложных задачах приходится использовать совместно не-
сколько формул.

В заключение приведем основные свойства чисел .

Прежде всего, построим таблицу таких чисел, используя формулу (3.11).

Таблица чисел имеет треугольную форму и называется треугольником Паскаля по имени математика Блеза Паскаля (1623-1662). Анализируя треугольник Паскаля, легко видеть основные свойства чисел .

Свойства 1 – 2 вытекают из определения сочетания как подмножества, содержащего m элементов множества, имеющего n элементов.

Свойства 3 – 5 доказываются методом математической индукции.

В силу свойства 4 треугольник Паскаля легко продолжить вниз на любое число шагов.

рис 3.2 схема определения вида расстановок и выбора формул