» »

Конец черной дыры. Теория черных дыр. Возле черной дыры время идет очень медленно

30.09.2019

Из всех известных человечеству объектов, которые находятся в космическом пространстве, черные дыры производят самое жуткое и непонятное впечатление. Это ощущение охватывает практически каждого человека при упоминании черных дыр, несмотря на то, что о них человечеству стало известно уже более чем полтора столетия. Первые знания о данных явлениях были получены еще задолго до публикаций Эйнштейна о теории относительности. Но реальное подтверждение существования этих объектов было получено не так давно.

Конечно же, черные дыры по праву славятся своими странными физическими характеристиками, которые порождают еще больше загадок во Вселенной. Они с легкостью бросают вызов всем космическим законам физики и космической механики. Для того чтобы осознать все детали и принципы существования такого явления, как космическая дыра, нам нужно ознакомиться с современными достижениями в астрономии и применить фантазию, кроме того, придется выйти за рамки стандартных понятий. Для более легкого осознания и ознакомления с космическими дырами портал сайт подготовил много интересной информации, которая касается данных явлений во Вселенной.

Особенности черных дыр от портала сайт

Прежде всего, нужно отметить, что черные дыры не берутся из ниоткуда, они образуются из звезд, которые имеют гигантские размеры и массу. Кроме того, самой большой особенностью и уникальностью каждой черной дыры является то, что они обладают очень сильным гравитационным притяжением. Сила притяжения объектов к черной дыре превышает вторую космическую скорость. Такие показатели гравитации говорят о том, что с поля действия черной дыры не могут вырваться даже лучи света, поскольку они обладают значительно меньшей скоростью.

Особенностью притяжения можно назвать то, что оно притягивает все объекты, которые находятся в непосредственной близости. Чем больше объект, который проходит в близости черной дыры, тем большего влияния и притягивания он получит. Соответственно можно сделать вывод, что чем больше объект, тем сильнее его притягивает черная дыра, а для того, чтобы избежать подобного влияния космическое тело должно обладать очень высокими скоростными показателями передвижения.

Также можно с уверенность отметить, что во всей Вселенной нет такого тела, которое смогло бы избежать притяжения черной дыры, оказавшись в непосредственной близости, поскольку даже самый быстрый по скорости световой поток не может избежать этого влияния. Для осознания особенностей черных дыр отлично подходит теория относительности, выведенная еще Эйнштейном. Согласно этой теории гравитация способна влиять на время и искажение пространства. Также она гласит, что чем больше объект, находящийся в космическом пространстве, тем сильнее он тормозит время. В близости от самой черной дыры время как бы вовсе останавливается. При попадании космического корабля в поле действия космической дыры можно было бы наблюдать, как он с приближением замедлялся бы, а в конечном итоге и вовсе исчез.

Не стоит очень сильно пугаться таких явлений, как черные дыры и верить всей ненаучной информации, которая может существовать на данный момент. Прежде всего, нужно развеять самый распространенный миф о том, что черные дыры могут всасывать всю окружающую их материю и объекты, и при этом они увеличиваются и поглощают все больше и больше. Все это не совсем верно. Да, действительно, они могут поглощать космические тела и материю, но только те, которые находятся на определенном расстоянии от самой дыры. Кроме своей мощной гравитации, они мало чем отличаются от обычных звезд с гигантской массой. Даже когда наше Солнце превратится в черную дыру, оно сможет затянуть только объекты, расположенные на небольшом расстоянии, а все планеты так и останутся вращаться по привычным орбитам.

Обращаясь к теории относительности, можно сделать вывод, что все объекты с сильной гравитацией могут влиять на искривление времени и пространства. Кроме того, чем больше масса тела, тем и искажение будет сильнее. Так, совсем недавно ученым удалось увидеть это на практике, когда можно было созерцать другие объекты, которые должны были быть недоступны нашему взору из-за огромных космических тел таких, как галактики или черные дыры. Все это возможно за счет того, что проходящие рядом от черной дыры или другого тела световые лучи очень сильно изгибаются под влиянием их гравитации. Такой тип искажения позволяет ученым заглянуть значительно дальше в космическое пространство. Но при таких исследованиях очень сложно определить реальное местонахождение исследуемого тела.

Черные дыры не появляются из ниоткуда, они образовываются в результате взрыва сверхмассивных звезд. Причем для того чтобы сформировалась черная дыра, масса взорванной звезды должна быть как минимум в десять раз больше, чем масса Солнца. Каждая звезда существует за счет термоядерных реакций, которые проходят внутри звезды. При этом выделяется сплав водорода в процессе синтеза, но и он не может покинуть зону действия звезды, поскольку ее гравитация притягивает водород обратно. Весь этот процесс и позволяет существовать звездам. Синтез водорода и гравитация звезды – достаточно отлаженные механизмы, но нарушение этого баланса может привести к взрыву звезды. В большинстве случаев к нему приводят исчерпания ядерного топлива.

В зависимости от массы звезды возможны несколько сценариев их развития после взрыва. Так, массивные звезды образуют поле взрыва сверхновой звезды, причем большинство из них так и остаются позади ядра бывшей звезды, такие объекты астронавты называют Белыми Карликами. В большинстве случаев вокруг этих тел образуется газовое облако, которое удерживается гравитацией этого карлика. Возможен и иной путь развития сверхмассивных звезд, при котором полученная черная дыра будет очень сильно притягивать всю материю звезды к ее центру, что приведет к сильному ее сжатию.

Такие сжатые тела именуются как нейтронные звезды. В самых редких случаях после взрыва звезды возможно образование черной дыры в принятом нами понимании данного явления. Но чтобы была создана дыра, масса звезды должна быть просто гигантской. В этом случае при нарушении баланса ядерных реакций гравитация звезды просто сходит с ума. При этом она начинает активно коллапсировать, после чего становится только точкой в пространстве. Другими словами, можно сказать, что звезда как физический объект перестает существовать. Несмотря на то, что она исчезает, за ней образуется черная дыра с теми же показателями силы тяжести и массой.

Именно коллапсирование звезд и приводит к тому, что они полностью исчезают, а на их месте формируется черная дыра с теми же физическими свойствами, как и исчезнувшая звезда. Отличием становится только большая степень сжатия дыры, чем был объем звезды. Самой главной особенностью всех черных дыр является их сингулярность, которая и определяет ее центр. Эта область противостоит всем законам физики, материи и пространства, которые перестают существовать. Для осознания понятия сингулярности можно сказать, что это барьер, который называют горизонтом космических событий. Также она является внешней границей действия черной дыры. Сингулярность можно назвать точкой невозврата, поскольку именно там начинает действовать гигантская сила тяготения дыры. Даже свет, который пересекает этот барьер, не в силах вырваться.

Горизонт событий обладает таким притягивающим эффектом, который притягивает все тела со скоростью света, с приближением до самой черной дыры скоростные показатели еще больше увеличиваются. Именно поэтому все объекты, попавшие в зону действия этой силы, обречены на то, что их затянет дыра. Нужно отметить, что подобные силы способны видоизменять тело, попавшее в силу действия такого притяжения, после чего они протягиваются в тонкую струну, а потом и вовсе перестают существовать в пространстве.

Расстояние между горизонтом событий и сингулярностью может отличаться, это пространство названо радиусом Шварцшильда. Именно поэтому чем больше размер черной дыры, тем большим будет и радиус действия. К примеру, можно сказать, что черная дыра, которая была бы массой как наше Солнце, имела бы радиус Шварцшильда в три километра. Соответственно большие черные дыры имеют больший радиус действия.

Поиск черных дыр – достаточно сложный процесс, поскольку свет не может вырваться из них. Поэтому поиск и определение опираются только на косвенные доказательства их существования. Самым простым методом их нахождения, который используют ученые, является поиск их по нахождению мест в темном пространстве, если они обладают большой массой. В большинстве случаев астрономам удается находить черные дыры в двойных звездных системах или же в центрах галактик.

Большинство астрономов склонно считать, что в центре нашей галактики также существует сверхмощная черная дыра. Это утверждение порождает вопрос, сможет ли эта дыра поглотить все в нашей галактике? В действительности это невозможно, поскольку сама дыра имеет такую же массу, как и звезды, потому что она и создана из звезды. Тем более все расчеты ученых не предвещают никаких глобальных событий, связанных с этим объектом. Более того, еще миллиарды лет космические тела нашей галактики будут спокойно вращаться вокруг этой черной дыры без каких-либо изменений. Доказательством существования дыры в центре Млечного Пути может служить зафиксированные учеными рентгеновские волны. А большинство астрономов склонно считать, что черные дыры их активно излучают в огромном количестве.

Достаточно часто в нашей галактике распространены звездные системы, состоящие из двух звезд, причем зачастую одна из них может становиться черной дырой. В этом варианте черная дыра поглощает все тела на своем пути, при этом материя начинает вращаться вокруг нее, за счет чего формируется так называемый диск ускорения. Особенностью можно назвать то, что она увеличивает скорость вращения и приближается к центру. Именно материя, которая попадает в середину черной дыры, и излучает рентгеновское излучение, а сама материя при этом разрушается.

Двойные системы звезд являются самыми первыми кандидатами на статус черной дыры. В таких системах наиболее легко можно найти черную дыру, за счет объема видимой звезды можно просчитать и показатели невидимого собрата. В настоящее время самым первым кандидатом на статус черной дыры может стать звезда из созвездия Лебедя, которая активно излучает рентгеновские лучи.

Делая вывод из всего вышеуказанного о черных дырах можно сказать, что они не такие уж и опасные явления, конечно же, в случае непосредственной близости они являются самыми мощными из-за силы гравитации объектами в космическом пространстве. Поэтому можно сказать, что они особо ничем не отличаются от иных тел, основной их особенностью является сильное гравитационное поле.

Относительно назначения черных дыр было предложено огромное количество теорий, среди которых были даже абсурдные. Так, по одной из них ученые считали, что черные дыры могут порождать новые галактики. Данная теория опирается на то, что наш мир является достаточно благоприятным местом для зарождения жизни, но в случае изменения одного из факторов жизнь была бы невозможной. В силу этого сингулярность и особенности изменения физических свойств в черных дырах могут породить совершенно новую Вселенную, которая будет значительно отличаться от нашей. Но это лишь теория и достаточно слабая в силу того, что не существует никаких доказательств подобного воздействия черных дыр.

Что касается черных дыр, то они не только могут поглощать материю, но они также могут испаряться. Подобное явление было доказано несколько десятилетий тому назад. Это испарение может привести к тому, что черная дыра потеряет всю свою массу, а дальше и вовсе исчезнет.

Все это является самой малой частицей информации о черных дырах, которую Вы можете узнать на портале сайт. Также мы владеем огромным количеством интересной информации о других космических явлениях.

«Научная фантастика может быть полезной - она стимулирует воображение и избавляет от страха перед будущим. Однако научные факты могут оказаться намного поразительнее. Научная фантастика даже не предполагала наличия таких вещей, как черные дыры »
Стивен Хокинг

В глубинах вселенной для человека таится бесчисленное множество загадок и тайн. Одной из них являются черные дыры – объекты, которые не могут понять даже величайшие умы человечества. Сотни астрофизиков пытаются раскрыть природу черных дыр, однако на данном этапе мы еще даже не доказали их существование на практике.

Кинорежиссеры посвящают им свои фильмы, а среди простых людей черные дыры стали настолько культовым явлением, что их отождествляют с концом света и неминуемой гибелью. Их боятся и ненавидят, но при этом боготворят их и преклоняются перед неизвестностью, которую таят в себе эти странные осколки Вселенной. Согласитесь, быть поглощенным черной дырой – та еще романтика. С их помощью можно , а также они могут стать для нас проводниками в .

На популярности черных дыр часто спекулирует желтая пресса. Найти заголовки в газетах, связанные с концом света на планете из-за очередного столкновения со сверхмассивной черной дырой, не проблема. Гораздо хуже то, что малограмотная часть населения все воспринимает это всерьез и поднимает настоящую панику. Чтобы внести толику ясности, мы отправимся в путешествие к истокам открытия черных дыр и попытаемся понять, что же это такое и как к этому относиться.

Невидимые звезды

Так уж сложилось, что современные физики описывают устройство нашей Вселенной с помощью теории относительности, которую человечеству в начале 20 века заботливо предоставил Эйнштейн. Тем более загадочными становятся черные дыры, на горизонте событий которых прекращают действовать все известные нам законы физики и эйнштейновская теория в том числе. Это ли не прекрасно? К тому же, догадку о существовании черных дыр высказали задолго до рождения самого Эйнштейна.

В 1783 году в Англии наблюдался значительный рост научной активности. В те времена наука шла бок о бок с религией, они неплохо уживались вместе, а ученых уже не считали еретиками. Более того, научными изысканиями занимались священники. Одним из таких служителей Бога был английский пастор Джон Мичелл, который задавался не только вопросами бытия, но и вполне научными задачами. Мичелл был весьма титулованным ученым: изначально он был преподавателем математики и древнего языкознания в одном из колледжей, а после этого за ряд открытий был принят в Лондонское королевское общество.

Джон Мичелл занимался вопросами сейсмологии, но на досуге любил поразмыслить о вечном и космосе. Так у него родилась идея о том, что где-то в глубинах Вселенной могут существовать сверхмассивные тела с такой мощной гравитацией, что для преодоления силы тяготения такого тела необходимо двигаться со скоростью равной или выше скорости света. Если принять такую теорию за истину, то развить вторую космическую скорость (скорость, необходимая для преодоления гравитационного притяжения покидаемого тела) не сможет даже свет, поэтому такое тело останется невидимым для невооруженного глаза.

Свою новую теорию Мичелл обозвал «темными звездами», а заодно попытался вычислить массу таких объектов. Свои мысли по этому поводу он высказал в открытом письме Лондонскому королевскому обществу. К сожалению, в те времена такие изыскания не представляли особой ценности для науки, поэтому письмо Мичелла отправили в архив. Лишь спустя две сотни лет во второй половине 20 века удалось обнаружить его среди тысяч других записей, бережно хранящихся в древней библиотеке.

Первые научные обоснования существования черных дыр

После выхода Общей теории относительности Эйнштейна в свет, математики и физики всерьез взялись за решение представленных немецким ученым уравнений, которые должны были рассказать нам много нового об устройстве Вселенной. Тем же решил заняться и немецкий астроном, физик Карл Шварцшильд в 1916 году.

Ученый с помощью своих вычислений пришел к выводу, что существование черных дыр возможно. Также он первым описал то, что впоследствии назвали романтической фразой «горизонт событий» — воображаемую границу пространства-времени у черной дыры, после пересечения которой наступает точка невозврата. Из-за горизонта событий не вырвется ничто, даже свет. Именно за горизонтом событий наступает так называемая «сингулярность», где известные нам законы физики перестают действовать.

Продолжая развивать свою теорию и решая уравнения, Шварцшильд открывал для себя и мира новые тайны черных дыр. Так, он смог исключительно на бумаге вычислить расстояние от центра черной дыры, где сконцентрирована ее масса, до горизонта событий. Данное расстояние Шварцшильд назвал гравитационным радиусом.

Несмотря на то, что математически решения Шварцшильда были исключительно верны и не могли быть опровергнуты, научное сообщество начала 20 века не могло сразу принять столь шокирующее открытие, и существование черных дыр было списано на уровень фантастики, которая то и дело проявлялась в теории относительности. На ближайшие полтора десятка лет исследование космоса на предмет наличия черных дыр было медленным, и занимались им единичные приверженцы теории немецкого физика.

Звезды, рождающие тьму

После того, как уравнения Эйнштейна были разобраны по полочкам, настало время с помощью сделанных выводов разбираться в устройстве Вселенной. В частности, в теории эволюции звезд. Ни для кого не секрет, что в нашем мире ничто не вечно. Даже звезды имеют свой цикл жизни, пусть и более долгий, нежели человек.

Одним из первых ученых, которые всерьез заинтересовались звездной эволюцией, стал молодой астрофизик Субраманьян Чандрасекар – уроженец Индии. В 1930 году он выпустил научную работу, в которой описывалось предполагаемое внутреннее строение звезд, а также циклы их жизни.

Уже в начале 20 века ученые догадывались о таком явлении, как гравитационное сжатие (гравитационный коллапс). В определенный момент своей жизни звезда начинает сжиматься с огромной скоростью под действием гравитационных сил. Как правило, это происходит в момент смерти звезды, однако при гравитационном коллапсе есть несколько путей дальнейшего существования раскаленного шара.

Научный руководитель Чандрасекара Ральф Фаулер – уважаемый в свое время физик-теоретик – предполагал, что во время гравитационного коллапса любая звезда превращается в более мелкую и горячую – белого карлика. Но вышло так, что ученик «сломал» теорию учителя, которую разделяло большинство физиков начала прошлого века. Согласно работе молодого индуса, кончина звезды зависит от ее изначальной массы. Например, белыми карликами могут становиться только те звезды, чья масса не превышала 1.44 от массы Солнца. Это число было названо пределом Чандрасекара. Если же масса звезды превышала этот предел, то она умирает совсем иначе. При определенных условиях, такая звезда в момент смерти может возродиться в новую, нейтронную звезду – еще одну загадку современной Вселенной. Теория относительности же подсказывает нам еще один вариант – сжатие звезды до сверхмалых величин, и вот здесь начинается самое интересное.

В 1932 году в одном из научных журналов появляется статья, в которой гениальный физик из СССР Лев Ландау предположил, что при коллапсе сверхмассивная звезда сжимается в точку с бесконечно малым радиусом и бесконечной массой. Несмотря на то, что такое событие весьма сложно представить с точки зрения неподготовленного человека, Ландау был недалек от истины. Также физик предположил, что согласно теории относительности, гравитация в такой точке будет столь велика, что начнет искажать пространство-время.

Теория Ландау понравилась астрофизикам, и они продолжили ее развивать. В 1939 году в Америке благодаря усилиям двух физиков – Роберта Оппенгеймера и Хартленда Снейдера – появилась теория, подробно описывающая сверхмассивную звезду на момент коллапса. В результате такого события должна была появиться настоящая черная дыра. Несмотря на убедительность доводов, ученые продолжали отрицать возможность существования подобных тел, как и превращение в них звезд. Даже Эйнштейн отстранился от этой идеи, посчитав, что звезда не способна на такие феноменальные превращения. Другие же физики не скупились в высказываниях, называя возможность таких событий нелепыми.
Впрочем, наука всегда достигает истины, стоит лишь немного подождать. Так и получилось.

Самые яркие объекты во Вселенной

Наш мир – совокупность парадоксов. Иногда в нем уживаются вещи, сосуществование которых не поддается никакой логике. Например, термин «черная дыра» не будет ассоциироваться у нормального человека с выражением «невероятно яркий», однако открытие начала 60-х годов прошлого века позволило ученым считать это утверждение неверным.

С помощью телескопов астрофизикам удалось обнаружить неизвестные до того момента объекты на звездном небе, которые вели себя совсем странно несмотря на то, что выглядели, как обычные звезды. Изучая эти странные светила, американский ученый Мартин Шмидт обратил внимание на их спектрографию, данные которой показывали отличные от сканирования других звезд результаты. Проще говоря, эти звезды не были похожи на другие, привычные нам.

Внезапно Шмидта осенило, и он обратил внимание на смещение спектра в красном диапазоне. Оказалось, что эти объекты намного дальше от нас, чем те звезды, что мы привыкли наблюдать в небе. Например, наблюдаемый Шмидтом объект был расположен в двух с половиной миллиардах световых лет от нашей планеты, но светил так же ярко, как и звезда в каких-нибудь сотне световых лет от нас. Получается, свет от одного такого объекта сопоставим с яркостью целой галактики. Такое открытие стало настоящим прорывом в астрофизике. Ученый назвал эти объекты «quasi-stellar» или просто «квазар».

Мартин Шмидт продолжил изучение новых объектов и выяснил, что столь яркое свечение может быть вызвано только по одной причине – аккреции. Аккреция – это процесс поглощения сверхмассивным телом окружающей материи с помощью гравитации. Ученый пришел к выводу, что в центре квазаров находится огромная черная дыра, которая с невероятной силой втягивает в себя окружающую ее в пространстве материю. В процессе поглощения дырой материи, частицы разгоняются до огромных скоростей и начинают светиться. Своеобразный светящийся купол вокруг черной дыры называется аккреационным диском. Его визуализация была хорошо продемонстрирована в киноленте Кристофера Нолана «Интерстеллар», которая породила множество вопросов «как черная дыра может светиться?».

На сегодняшний день ученые нашли на звездном небе уже тысячи квазаров. Эти странные невероятно яркие объекты называют маяками Вселенной. Они позволяют нам чуть лучше представить устройство космоса и ближе подойти к моменту, с которого все началось.

Несмотря на то, что астрофизики уже много лет получали косвенные доказательства существования сверхмассивных невидимых объектов во Вселенной, термина «черная дыра» не существовало вплоть до 1967 года. Чтобы избежать сложных названий, американский физик Джон Арчибальд Уиллер предложил назвать такие объекты «черными дырами». Почему бы и нет? В какой-то мере они черные, ведь мы их не можем увидеть. К тому же они все притягивают, в них можно упасть, прямо как в настоящую дыру. Да и выбраться из такого места согласно современным законам физики просто невозможно. Впрочем, Стивен Хокинг утверждает, что при путешествии сквозь черную дыру можно попасть в другую Вселенную, другой мир, а это уже надежда.

Страх бесконечности

Из-за излишней таинственности и романтизации черных дыр, эти объекты стали настоящей страшилкой среди людей. Желтая пресса любит спекулировать на неграмотности населения, выдавая в тираж изумительные истории о том, как на нашу Землю движется огромная черная дыра, которая в считанные часы поглотит Солнечную систему, или же просто излучает волны токсичного газа в сторону нашей планеты.

Особенно популярна тема уничтожения планеты с помощью Большого Адронного Коллайдера, который был построен в Европе в 2006 году на территории Европейского совета по ядерным исследованиям (CERN). Волна паники начиналась как чья-то глупая шутка, однако нарастала как снежный ком. Кто-то пустил слух, что в ускорителе частиц коллайдера может образоваться черная дыра, которая поглотит нашу планету целиком. Конечно же, возмущенный народ начал требовать запретить эксперименты в БАК, испугавшись такого исхода событий. В Европейский суд начали поступать иски с требованием закрыть коллайдер, а ученых, создавших его, наказать по всей строгости закона.

На самом деле физики не отрицают, что при столкновении частиц в Большом Адронном Коллайдере могут возникать объекты, похожие по свойствам на черные дыры, однако их размер находится на уровне размеров элементарных частиц, а существуют такие «дыры» столь недолго, что нам даже не удается зафиксировать их возникновение.

Одним из главных специалистов, которые пытаются развеять волну невежества перед людьми, является Стивен Хокинг – знаменитый физик-теоретик, который, к тому же, считается настоящим «гуру» относительно черных дыр. Хокинг доказал, что черные дыры не всегда поглощают свет, который появляется в аккреационных дисках, и его часть рассеивается в пространство. Такое явление было названо излучением Хокинга, или испарением черной дыры. Также Хокинг установил зависимость между размером черной дыры и скоростью ее «испарения» — чем она меньше, тем меньше существует во времени. А это значит, что всем противникам Большого Адронного Коллайдера не стоит переживать: черные дыры в нем не смогут просуществовать и миллионной доли секунды.

Теория, не доказанная практикой

К сожалению, технологии человечества на данном этапе развития не позволяют нам проверить большинство теорий, разработанных астрофизиками и другими учеными. С одной стороны, существование черных дыр довольно убедительно доказано на бумаге и выведено с помощью формул, в которых все сошлось с каждой переменной. С другой, на практике нам пока не удалось увидеть воочию настоящую черную дыру.

Несмотря на все разногласия, физики предполагают, что в центре каждой из галактик находится сверхмассивная черная дыра, которая собирает своей гравитацией звезды в скопления и заставляет путешествовать по Вселенной большой и дружной компанией. В нашей галактике Млечный путь по разным оценкам насчитывается от 200 до 400 миллиардов звезд. Все эти звезды вращаются вокруг чего-то, что обладает огромной массой, вокруг чего-то, что мы не можем увидеть в телескоп. С большой долей вероятности это черная дыра. Стоит ли ее бояться? – Нет, по-крайней мере не в ближайшие несколько миллиардов лет, но мы можем снять про нее еще один интересный фильм.

Черная дыра

Черные дыры - это ограниченные участки космического пространства, в которых настолько сильна сила гравитации, что даже фотоны светового излучения не могут их покинуть, будучи не в силах вырваться из безжалостных объятий силы тяготения.

Как образуются черные дыры?

Ученые считают, что возможно, существует несколько разновидностей черных дыр. Один из видов может образоваться, когда умирает массивная старая звезда. Во Вселенной ежедневно рождаются и умирают звезды.

Предполагают, что другой тип черной дыры - это огромная темная масса в центре галактик. Колоссальные черные объекты формируются из миллионов звезд. Наконец, существуют мини черные дыры, их размеры с булавочную головку или с маленький мраморный шарик. Такие черные дыры образуются, когда относительно небольшие количества массы сплющиваются до невообразимо маленьких размеров.

Первый тип черных дыр образуется, когда звезда, превышающая размерами наше Солнце в 8 – 100 раз, заканчивает свой жизненный путь грандиозным взрывом. То, что остается от такой звезды, сжимается, или выражаясь по научному, создает коллапс. Под действием силы тяготения сжатие частиц звезды становится все теснее и теснее. Астрономы полагают, что в центре нашей Галактики - Млечного Пути - есть огромная черная дыра, масса которой превышает массу миллиона солнц.

Материалы по теме:

Интересные факты о звездах

Почему черная дыра черная?

Гравитация - это просто притяжение одной части материи к другой. Таким образом, чем больше материи собралось в одном каком – то месте, тем больше сила притяжения. На поверхности сверхплотной звезды из – за того, что огромная масса сконцентрирована в одном ограниченном объеме, сила притяжения невообразимо велика.

По мере дальнейшего уменьшения звезды сила притяжения возрастает на столько, что с ее поверхности не может даже излучаться свет. Материя и свет безвозвратно поглощаются звездой, которая поэтому получила название черной дыры. Ученые еще не имеют четких доказательств существования таких мега массивных черных дыр. Они снова и снова направляют свои телескопы в центры галактик, включая и центр нашей Галактики, чтобы исследовать эти странные участки и получить, наконец, доказательства существования черных дыр второго типа.

Черные дыры являются одними из самых удивительных и в то же время пугающих объектов нашей Вселенной. Возникают они в тот момент, когда в звездах, имеющих огромную массу, заканчивается ядерное топливо. Ядерные реакции прекращаются и светила начинают остывать. Тело звезды сжимается под действием гравитации и постепенно она начинает притягивать к себе более мелкие объекты, трансформируясь в черную дыру.

Первые исследования

Изучать черные дыры светила науки начали не так давно, несмотря на то что основные концепции их существования были разработаны еще в прошлом столетии. Само понятие «черной дыры» было введено в 1967 году Дж. Уиллером, хотя вывод о том, что эти объекты неизбежно возникают при коллапсе массивных звезд, был сделан еще в 30-х годах прошлого столетия. Все, что внутри черной дыры - астероиды, свет, поглощенные ею кометы, - когда-то приблизилось слишком близко к границам этого загадочного объекта и не сумело их покинуть.

Границы черных дыр

Первая из границ черной дыры называется пределом статичности. Это граница области, попадая в которую посторонний объект уже не может находиться в состоянии покоя и начинает вращаться относительно черной дыры, чтобы удержаться от падения в нее. Вторая граница зовется горизонтом событий. Все, что внутри черной дыры, когда-то проходило ее внешнюю границу и двигалось по направлению к точке сингулярности. По мнению ученых, здесь вещество вливается в эту центральную точку, плотность которой стремится к значению бесконечности. Люди не могут знать, какие законы физики действуют внутри объектов с такой плотностью, и поэтому описать характеристики этого места невозможно. В буквальном смысле слова оно является «черной дырой» (или, быть может, «пробелом») в знаниях человечества об окружающем мире.

Строение черных дыр

Горизонтом событий называется неприступная граница черной дыры. Внутри этой границы находится зона, которую не могут покинуть даже объекты, скорость движения которых равна скорости света. Даже кванты самого света не могут покинуть горизонт событий. Находясь в этой точке, никакой предмет уже не может вырваться из черной дыры. О том, что внутри черной дыры, мы не можем узнать по определению - ведь в ее глубинах находится так называемая точка сингулярности, которая формируется за счет предельного сжатия вещества. Когда объект попадает внутрь горизонта событий, с этого момента он никогда не сможет вырваться снова из нее и стать видимым для наблюдателей. С другой стороны, те, кто находятся внутри черных дыр, не могут видеть ничего из происходящего снаружи.

Размер горизонта событий, окружающего этот загадочный космический объект, всегда прямо пропорционален массе самой дыры. Если ее масса будет удвоена, то вдвое больше станет и внешняя граница. Если бы ученые смогли найти способ, позволяющий превратить Землю в черную дыру, то размер горизонта событий составлял бы всего лишь 2 см в поперечном разрезе.

Основные категории

Как правило, масса среднестатистических черных дыр приблизительно равна трем солнечным массам и более. Из двух видов черных дыр выделяют звездные, а также сверхмассивные. Их масса превосходит массу Солнца в несколько сотен тысяч раз. Звездные образуются после смерти больших небесных светил. Черные дыры обычной массы появляются после завершения жизненного цикла больших звезд. Оба вида черных дыр, несмотря на различное происхождение, имеют сходные свойства. Сверхмассивные черные дыры расположены в центрах галактик. Ученые предполагают, что они сформировались во времена образования галактик за счет слияния плотно прилежащих друг к другу звезд. Однако это только догадки, не подтвержденные фактами.

Что внутри черной дыры: догадки

Некоторые из математиков считают, что внутри этих загадочных объектов Вселенной находятся так называемые червоточины - переходы в другие Вселенные. Иными словами, в точке сингулярности расположен пространственно-временной туннель. Эта концепция послужила для многих писателей и режиссеров. Однако подавляющее большинство астрономов считают, что никаких туннелей между Вселенными не существует. Однако даже если бы они действительно были, у человека нет никаких способов узнать, что находится внутри черной дыры.

Существует и другая концепция, согласно которой в противоположном конце такого туннеля находится белая дыра, откуда из нашей Вселенной в другой мир через черные дыры поступает гигантское количество энергии. Однако на данном этапе развития науки и техники о путешествиях подобного рода не может быть и речи.

Связь с теорией относительности

Черные дыры являются одним из самых удивительных предсказаний А. Эйнштейна. Известно, что сила тяготения, которая создается на поверхности любой планеты, обратно пропорциональна квадрату ее радиуса и прямо пропорциональна ее массе. Для этого небесного тела можно определить понятие второй космической скорости, которая необходима, чтобы преодолеть эту силу тяготения. Для Земли она равна 11 км/сек. Если же масса небесного тела будет увеличиваться, а диаметр - наоборот, уменьшаться, то вторая космическая скорость со временем может превысить скорость света. И поскольку, согласно теории относительности, никакой объект не может двигаться быстрее скорости света, то образуется объект, не дающий ничему вырваться за его пределы.

В 1963 году учеными были обнаружены квазары - космические объекты, являющиеся гигантскими источниками радиоизлучения. Располагаются они очень далеко от нашей галактики - их удаленность составляет миллиарды световых лет от Земли. Чтобы объяснить чрезвычайно высокую активность квазаров, ученые ввели гипотезу о том, что внутри них располагаются черные дыры. Эта точка зрения сейчас является общепринятой в научных кругах. Исследования, которые проводились в течение последних 50 лет, не только подтвердили данную гипотезу, но и привели ученых к выводу о том, что черные дыры есть в центре каждой галактики. В центре нашей галактики также есть такой объект, его масса составляет 4 миллиона солнечных масс. Эта черная дыра носит название «Стрелец А», и поскольку она расположена ближе всего к нам, ее больше всего исследуют астрономы.

Излучение Хокинга

Этот тип излучения, открытый известным физиком Стивеном Хокингом, значительно усложняет жизнь современным ученым - ведь из-за этого открытия в теории черных дыр появилось немало трудностей. В классической физике существует понятие вакуума. Этим словом обозначается полная пустота и отсутствие материи. Однако с развитием квантовой физики понятие вакуума было видоизменено. Ученые выяснили, что он заполнен так называемыми виртуальными частицами - под воздействием сильного поля они могут превратиться в реальные. В 1974 году Хокинг выяснил, что подобные превращения могут происходить в сильном гравитационном поле черной дыры - возле ее внешней границы, горизонта событий. Такое рождение является парным - появляется частица и античастица. Как правило, античастица обречена на падение в черную дыру, а частица улетает. В результате ученые наблюдают некоторое излучение вокруг этих космических объектов. Оно и получило название излучения Хокинга.

В ходе этого излучения то вещество, что внутри черной дыры, медленно испаряется. Дыра теряет массу, при этом интенсивность излучения обратно пропорциональна величине квадрата ее массы. Интенсивность излучения Хокинга ничтожно мала по космическим меркам. Если предположить, что существует дыра массой в 10 солнц, и на нее не попадает ни свет, ни какие-либо материальные объекты, то даже в этом случае время ее распада будет чудовищно велико. Жизнь такой дыры будет превосходить все время существования нашей Вселенной на 65 порядков.

Вопрос о сохранении информации

Одной из основных проблем, которая появилась после открытия излучения Хокинга, является проблема потери информации. Связана она с вопросом, кажущимся на первый взгляд очень простым: что произойдет, когда черная дыра испарится полностью? Обе теории - как квантовая физика, так и классическая - имеют дело с описанием состояния системы. Обладая информацией о начальном состоянии системы, при помощи теории можно описать, каким образом она будет меняться.

При этом в процессе эволюции информация о начальном состоянии не теряется - действует своего рода закон о сохранении информации. Но если черная дыра испарится полностью, то наблюдатель теряет информацию о той части физического мира, который когда-то попал в дыру. Стивен Хокинг считал, что информация о начальном состоянии системы каким-то образом восстанавливается после того, как черная дыра испарилась полностью. Но трудность состоит в том, что по определению из черной дыры передача информации невозможна - ничто не может покинуть горизонт событий.

Что будет, если попадешь в черную дыру?

Считается, что если бы каким-либо невероятным способом человек мог попасть на поверхность черной дыры, то она сразу стала бы его затягивать в направлении себя. В конечном счете человек бы растянулся настолько, что превратился бы в поток субатомных частиц, движущихся по направлению к точке сингулярности. Доказать эту гипотезу, конечо же, невозможно, ведь ученые вряд ли когда-нибудь смогут узнать, что происходит внутри черных дыр. Сейчас некоторые физики заявляют, что если бы человек попал в черную дыру, то у него появился бы клон. Первая из его версий сразу же была бы уничтожена потоком раскаленных частиц излучения Хокинга, а вторая бы прошла через горизонт событий без возможности вернуться назад.

Каждый человек, знакомящийся с астрономией, рано или поздно испытывает сильное любопытство по поводу самых загадочных объектов Вселенной - черных дыр. Это настоящие властелины мрака, способные «проглотить» любой проходящий поблизости атом и не дать ускользнуть даже свету, - настолько мощно их притяжение. Эти объекты представляют настоящую проблему для физиков и астрономов. Первые пока еще не могут понять, что же происходит с упавшим внутрь черной дыры веществом, а вторые хоть и объясняют самые энергозатратные явления космоса существованием черных дыр, никогда не имели возможности наблюдать ни одну из них непосредственно. Мы расскажем об этих интереснейших небесных объектах, выясним, что уже было открыто и что еще предстоит узнать, чтобы приподнять завесу тайны.

Что такое черная дыра?

Название «черная дыра» (по-английски - black hole) было предложено в 1967 году американским физиком-теоретиком Джоном Арчибальдом Уилером (см. фото слева). Оно служило для обозначения небесного тела, притяжение которого настолько сильно, что не отпускает от себя даже свет. Потому она и «черная», что не испускает света.

Косвенные наблюдения

В этом кроется причина такой таинственности: поскольку черные дыры не светятся, мы не можем увидеть их непосредственно и вынуждены искать и изучать их, используя лишь косвенные свидетельства, которые их существование оставляет в окружающем пространстве. Иными словами, если черная дыра поглощает звезду, мы не видим черную дыру, но можем наблюдать разрушительные последствия воздействия ее мощного гравитационного поля.

Интуиция Лапласа

Несмотря на то, что выражение «черная дыра» для обозначения гипотетической финальной стадии эволюции звезды, сколлапсировавшей в себя под воздействием силы тяжести, появилось сравнительно недавно, идея о возможности существования таких тел возникла более двух веков назад. Англичанин Джон Мичелл и француз Пьер-Симон де Лаплас независимо друг от друга выдвинули гипотезу о существовании «невидимых звезд»; при этом они основывались на обычных законах динамики и законе всемирного тяготения Ньютона. Сегодня черные дыры получили свое правильное описание на основе общей теории относительности Эйнштейна.

В своем труде «Изложение системы мира» (1796) Лаплас писал: «Яркая звезда той же плотности, что и Земля, диаметром, в 250 раз превосходящим диаметр Солнца, благодаря своему гравитационному притяжению не позволила бы световым лучам добраться до нас. Следовательно, возможно, что самые крупные и самые яркие небесные тела по этой причине являются невидимыми».

Непобедимое тяготение

В основе идеи Лапласа лежало понятие скорости убегания (второй космической скорости). Черная дыра является настолько плотным объектом, что ее притяжение способно задержать даже свет, развивающий наибольшую в природе скорость (почти 300000 км/с). На практике, для того чтобы убежать из черной дыры, требуется скорость выше скорости света, но это невозможно!

Это означает, что звезда такого рода будет невидимой, поскольку даже свету не удастся преодолеть ее мощную гравитацию. Эйнштейн объяснял этот факт через явление отклонения света под воздействием гравитационного поля. В реальности вблизи черной дыры пространство-время настолько искривлено, что траектории световых лучей также замыкаются на самих себе. Для того чтобы превратить Солнце в черную дыру, мы должны будем сосредоточить всю его массу в шаре радиусом 3 км, а Земля должна будет превратиться в шарик радиусом 9 мм!

Виды черных дыр

Еще около десяти лет назад наблюдения позволяли предположить существование двух видов черных дыр: звездных, масса которых сравнима с массой Солнца или ненамного превышает ее, и сверхмассивных, масса которых - от нескольких сотен тысяч до многих миллионов масс Солнца. Однако относительно недавно рентгеновские изображения и спектры высокого разрешения, полученные с искусственных спутников типа «Чандра» и «ХММ-Ньютон», вывели на авансцену третий тип черной дыры -с массой средней величины, превосходящей массу Солнца в тысячи раз.

Звездные черные дыры

Звездные черные дыры стали известны раньше других. Они формируются тогда, когда звезда большой массы в конце своего эволюционного пути исчерпывает запасы ядерного горючего и коллапсирует сама в себя из-за собственной гравитации. Потрясающий звезду взрыв (это явление известно под названием «взрыва сверхновой») имеет катастрофические последствия: если ядро звезды превосходит массу Солнца более чем в 10 раз, никакая ядерная сила не способна противостоять гравитационному коллапсу, результатом которого будет появление черной дыры.

Сверхмассивные черные дыры

Иное происхождение имеют сверхмассивные черные дыры, впервые отмеченные в ядрах некоторых активных галактик. Относительно их рождения есть несколько гипотез: звездная черная дыра, которая в течение миллионов лет пожирает все окружающие ее звезды; слившееся воедино скопление черных дыр; колоссальное газовое облако, коллапсирующее непосредственно в черную дыру. Эти черные дыры являются одними из самых насыщенных энергией объектов космоса. Они расположены в центрах очень многих галактик, если не всех. Наша Галактика тоже имеет такую черную дыру. Иногда благодаря наличию такой черной дыры ядра этих галактик становятся очень яркими. Галактики с черными дырами в центре, окруженными большим количеством падающего вещества и, следовательно, способными произвести колоссальное количество энергии, называются «активными», а их ядра -«активными ядрами галактик» (AGN). Например, квазары (самые удаленные от нас космические объекты, доступные нашему наблюдению) являются активными галактиками, у которых мы видим только очень яркое ядро.

Средние и «мини»

Еще одной тайной остаются черные дыры средней массы, которые, согласно недавним исследованиям, могут оказаться в центре некоторых шаровых скоплений, таких, например, как М13 и NCC 6388. Многие астрономы высказываются об этих объектах скептически, но некоторые новейшие исследования позволяют предположить наличие черных дыр средних размеров даже недалеко от центра нашей Галактики. Английский физик Стивен Хокинг выдвинул также теоретическое предположение о существовании четвертого вида черной дыры - «мини-дыры» с массой лишь в миллиард тонн (что примерно равно массе большой горы). Речь идет о первичных объектах, то есть появившихся в первые мгновения жизни Вселенной, когда давление было еще очень высоким. Впрочем, пока не обнаружено ни одного следа их существования.

Как найти черную дыру

Всего несколько лет назад над черными дырами «зажегся свет». Благодаря постоянно совершенствуемым приборам и технологиям (как наземным, так и космическим) эти объекты становятся все менее загадочными; точнее, менее загадочным становится окружающее их пространство. В самом деле, коль скоро сама черная дыра невидима, мы можем распознать ее только в том случае, если она окружена достаточным количеством вещества (звезд и горячего газа), обращающегося вокруг нее на небольшом удалении.

Наблюдая за двойными системами

Некоторые звездные черные дыры были обнаружены в процессе наблюдения орбитального движения звезды вокруг невидимого компаньона по двойной системе. Тесные двойные системы (то есть состоящие из двух очень близких друг к другу звезд), один из компаньонов в которых невидим, - излюбленный объект наблюдений астрофизиков, ищущих черные дыры.

Указанием на наличие черной дыры (или нейтронной звезды) служит сильная эмиссия рентгеновских лучей, вызванная сложным механизмом, который можно схематически описать следующим образом. Благодаря своей мощной гравитации черная дыра может вырывать вещество из звезды-компаньона; этот газ распределяется в форме плоского диска и падает по спирали в черную дыру. Трение, возникающее в результате столкновений частичек падающего газа, нагревает внутренние слои диска до нескольких миллионов градусов, что вызывает мощное излучение рентгеновских лучей.

Наблюдения в рентгеновских лучах

Проводящиеся уже несколько десятилетий наблюдения в рентгеновских лучах объектов нашей Галактики и соседних галактик позволили обнаружить компактные двойные источники, примерно десяток из которых представляет собой системы, содержащие кандидатов в черные дыры. Основной проблемой является определение массы невидимого небесного тела. Значение массы (пусть и не очень точное) можно найти, изучая движение компаньона или, что намного труднее, измеряя интенсивность рентгеновского излучения падающего вещества. Эта интенсивность связана уравнением с массой тела, на которое падает это вещество.

Нобелевский лауреат

Нечто подобное можно сказать и в отношении сверхмассивных черных дыр, наблюдаемых в ядрах многих галактик, массы которых оцениваются через измерение орбитальных скоростей газа, проваливающегося в черную дыру. В этом случае вызванный мощным гравитационным полем очень крупного объекта быстрый рост скорости газовых облаков, обращающихся по орбите в центре галактик, выявляется наблюдениями в радиодиапазоне, а также в оптических лучах. Наблюдения в рентгеновском диапазоне могут подтвердить повышенное выделение энергии, вызванное падением вещества внутрь черной дыры. Исследования в рентгеновских лучах в начале 1960-х годов начал работавший в США итальянец Риккардо Джаккони. Присужденная ему в 2002 году Нобелевская премия стала признанием его «новаторского вклада в астрофизику, что привело к открытию в космосе источников рентгеновского излучения».

Лебедь X-1: первый кандидат

Наша Галактика не застрахована от наличия объектов-кандидатов в черные дыры. К счастью, ни один из этих объектов не находится настолько близко к нам, чтобы представлять опасность для существования Земли или Солнечной системы. Несмотря на большое количество отмеченных компактных источников рентгеновского излучения (а это наиболее вероятные кандидаты для нахождения там черных дыр), у нас нет уверенности в том, что они на самом деле содержат черные дыры. Единственным среди этих источников, не имеющим альтернативной версии, является тесная двойная система Лебедь X-1, то есть наиболее яркий источник рентгеновского излучения, в созвездии Лебедь.

Массивные звезды

Эта система, орбитальный период которой составляет 5,6 суток, состоит из очень яркой голубой звезды большого размера (ее диаметре 20 раз превосходит солнечный, а масса - примерно в 30 раз), легко различимой даже в ваш телескоп, и невидимой второй звезды, масса которой оценивается в несколько солнечных масс (до 10). Расположенная на расстоянии 6500 световых лет от нас вторая звезда была бы отлично видна, если бы она была обычной звездой. Ее невидимость, производимое системой мощное рентгеновское излучение и, наконец, оценка массы заставляют большинство астрономов думать о том, что это - первый подтвержденный случай обнаружения звездной черной дыры.

Сомнения

Впрочем,есть и скептики. Среди них один из крупнейших исследователей черных дыр физик Стивен Хокинг. Он даже заключил пари с американским коллегой Килом Торном - ярым сторонником классификации объекта Лебедь X-1 как черной дыры.

Спор о сущности объекта Лебедь X-1 - не единственное пари Хокинга. Посвятив несколько девятилетий теоретическим исследованиям черных дыр, он убедился в ошибочности своих прежних представлений об этих загадочных объектах.. В частности, Хокинг предполагал, что вещество после падения в черную дыру исчезает навсегда, а с ним исчезает и весь его информационный багаж. Он был настолько в этом уверен, что заключил на эту тему в 1997 году пари с американским коллегой Джоном Прескйллом.

Признание ошибки

21 июля 2004 года в своем выступлении на конгрессе по теории относительности в Дублине Хокинг признал правоту Прескилла. Черные дыры не приводят к полному исчезновению вещества. Более того, они обладают определенного рода «памятью». Внутри них вполне могут храниться следы того, что они поглотили. Таким образом, «испаряясь» (то есть медленно испуская излучение вследствие квантового эффекта), они могут возвращать эту информацию нашей Вселенной.

Черные дыры в Галактике

Астрономы еще питают множество сомнений относительно наличия в нашей Галактике звездных черных дыр (подобных той, что принадлежит двойной системе Лебедь X-1); но в отношении сверхмассивных черных дыр сомнений гораздо меньше.

В центре

В нашей Галактике имеется минимум одна сверхмассивная черная дыра. Ее источник, известный под именем Стрелец А*, точно локализован в центре плоскости Млечного Пути. Его название объясняется тем, что это самый мощный радиоисточник в созвездии Стрелец. Именно в этом направлении расположены как геометрический, так и физический центры нашей галактической системы. Находящаяся на расстоянии около 26000 световых лет от нас сверхмассивная черная дыра, связанная с источником радиоволн Стрелец А*, обладает массой, которая оценивается примерно в 4 млн солнечных масс, заключенных в пространстве, объем которого сравним с объемом Солнечной системы. Ее относительная близость к нам (эта сверхмассивная черная дыра, без сомнения, ближайшая к Земле) стала причиной того, что в последние годы объект подвергся особенно глубокому исследованию при помощи космической обсерватории «Чандра». Выяснилось, в частности, что он также представляет собой мощный источник рентгеновского излучения (но не столь мощный, как источники в активных ядрах галактик). Стрелец А*, возможно, является «спящим» остатком того, что миллионы или миллиарды лет назад было активным ядром нашей Галактики.