» »

Кто создан путем генной инженерии. Что такое генная инженерия и что она изучает

30.09.2019

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Генетическая инженерия, совокупность методов биохимии и молекулярной генетики, с помощью которых осуществляется направленное комбинированное генетической информации любых организмов.

Генетическая инженерия позволяет преодолевать природные межвидовые барьеры, препятствующие обмену генетической информацией между таксономически удаленными видами организмов, и создавать клетки и организмы с не существующими в природе сочетаниями генов, с заданными наследуемыми свойствами. Главным объектом генно-инженерного воздействия является носитель генетической информации - дизоксирибонуклеиновая кислота (ДНК), молекула которой обычно состоит из двух цепей. Строгая специфичность спаривания пуриновых и пиримидиновых оснований обусловливает свойство комплементарности - взаимного соответствия нуклеотидов в двух цепях. Создание новых сочетаний генов оказалось возможным благодаря принципиальному сходству строения молекул ДНК у всех видов организмов, а фактически универсальность генетического кода обеспечивает экспрессию чужеродных генов (проявление их функциональной активности) в любых видах клеток. Этому способствовало также накопление знаний в области химии нуклеиновых кислот, выявление молекулярных особенностей организации и функционирования генов (в т. ч.установление механизмов регуляции их экспрессии и возможности подчинения генов действию «чужих» регуляторных элементов), разработка методов секвенирования ДНК, открытие полимеразной цепной реакции, позволившей быстро синтезировать любой фрагмент ДНК. Важными предпосылками для появления генетической инженерии явились: открытие плазмид, способных к автономной репликации и переходу из одной бактериальной клетки в другую, и явления трансдукции - переноса некоторых генов бактериофагами, что позволило сформулировать представление о векторах: молекулах - переносчиках генов. Огромное значение в развитии методологии генетической инженерии сыграли ферменты, участвующие в преобразовании нуклеиновых кислот: рестриктазы (узнают в молекулах ДНК строго определенные последовательности - сайты - и «разрезают» двойную цепь в этих местах), ДНК-лигазы (ковалентно связывают отдельные фрагменты ДНК), обратная транскриптаза (синтезирует на матрице РНК комплементарную копию ДНК, или кДНК) и др. Только при их наличии создание искусственных структур стало технически выполнимой задачей. Ферменты используются для получения индивидуальных фрагментов ДНК (генов) и создания молекулярных гибридов - рекомбинантных ДНК (рекДНК) на основе ДНК плазмид и вирусов. Последние доставляют нужный ген в клетку хозяина, обеспечивая там его размножение (клонирование) и образование конечного продукта гена (его экспрессию).

Принципы созд ания рекомбинантных молекул ДНК

Термин «Генетическая инженерия» получил распространение после того, как в 1972 П. Бергом с сотрудниками впервые была получена рекомбинантная ДНК, представлявшая собой гибрид, в котором были соединены фрагменты ДНК бактерии кишечной палочки, ее вируса (бактериофага a) и ДНК обезьяньего вируса SV40. В 1973 С. Коэн с сотрудниками использовали плазмиду pSC101 и рестриктазу (EcoRI), которая раскрывает ее в одном месте таким образом, что на концах двухцепочечной молекулы ДНК образуются короткие комплементарные одноцепочечные «хвосты» (обычно 4 - 6 нуклеотидов). Их называли «липкими», поскольку они могут спариваться (как бы слипаться) друг с другом. Когда такую ДНК смешивали с фрагментами чужеродной ДНК, обработанной той же рестриктазой и имеющей такие же липкие концы, получались новые гибридные плазмиды, каждая из которых содержала, по крайней мере, один фрагмент чужеродной ДНК, встроенной в EcoRI-сайт плазмиды. Стало очевидным, что в такие плазмиды можно встраивать фрагменты разнообразных чужеродных ДНК, полученных как из микроорганизмов, так и из высших эукариот.

Основная современная стратегия получения рекДНК сводится к следующему:

1) В ДНК плазмиды или вируса, способных размножаться независимо от хромосомы, встраивают принадлежащие другому организму фрагменты ДНК, содержащие определенные гены или искусственно полученные последовательности нуклеотидов, представляющие интерес для исследователя;

2) Образующиеся при этом гибридные молекулы вводят в чувствительные прокариотические или эукариотические клетки, где они реплицируются (размножаются, амплифицируются) вместе со встроенными в них фрагментами ДНК;

3) Отбирают клоны клеток в виде колоний на специальных питательных средах (или вирусов в виде зон просветления - бляшек на слое сплошного роста клеток бактерий или культур тканей животных), содержащие нужные типы молекул рекДНК и подвергают их разностороннему структурно-функциональному изучению.

Для облегчения отбора клеток, в которых присутствует рекДНК, используют векторы, содержащие один и более маркеров. У плазмид, например, такими маркерами могут служить гены устойчивости к антибиотикам (отбор клетик, содержащих рекДНК, проводят по их способности расти в присутствии того или иного антибиотика). РекДНК, несущие нужные гены, отбирают и вводят в реципиентные клетки. С этого момента начинается молекулярное клонирование - получение копий рек ДНК, а следовательно, и копий целевых генов в ее составе. Только при возможности разделения всех трансфицированных или инфицированных клеток каждый клон будет представлен отдельной колонией клеток и содержать определенную рек ДНК. На заключительном этапе производится идентификация клонов, в которых заключен нужный ген. Одна основывается на том, что вставка в рек ДНК детерминирует какое-то уникальное свойство содержащей его клетки (например, продукт экспрессии встроенного гена). В опытах по молекулярному клонированию соблюдаются 2 основных принципа: ни одна из клеток, где происходит клонирование рек ДНК, не должнаполучить более одной плазмидной молекулы или вирусной частицы; последние должны быть способны к репликации.

В качестве векторных молекул в генетической инженерии используется широкий спектр плазмидных и вирусных ДНК. Наиболее популярны клонирующие векторы, содержащие несколько генетических маркеров и имеющие по одному месту действия для разных рестриктаз. Таким требованиям, например, лучше всего отвечает плазмида pBR322, которая была сконструирована из исходно существующей в природе плазмиды с помощью методов, применяемых при работе с рекДНК; она содержит гены устойчивости к ампициллину и тетрациклину, а также по одному сайту узнавания для 19 разных рестриктаз. Частным случаем клонирующих векторов являются экспрессирующие векторы, которые наряду с амплфикацией обеспечивают правильную и эффективную экспрессию чужеродных генов в реципиентных клетках. В ряде случаев молекулярные векторы могут обеспечивать интеграцию чужеродной ДНК в геном клетки или вируса (их называют интегративными векторами).

Одна из важнейших задач генетической инженерии - создание штаммов бактерий или дрожжей, линий клеток тканей животных или растений, а также трансгенных растений и животных, которые обеспечивали бы эффективную экспрессию клонируемых в них генов. Высокий уровень продукции белков достигается в том случае, если гены клонируются в многокопийных векторах, т. к. при этом целевой ген будет находиться в клетке в большом количестве. Важно, чтобы кодирующая последовательность ДНК находилась под контролем промотора, который эффективно узнается РНК-полимеразой клетки, а образующаяся мРНК была бы относительно стабильной и эффективно транслировалась. Кроме того, чужеродный белок, синтезируемый в реципиентных клетках, не должен подвергаться быстрой деградации внутриклеточными протеазами. При создании трансгенных животных и растений часто добиваются тканеспецифичной экспрессии вводимых целевых генов.

Поскольку генетический код универсален, возможность экспрессии гена определяется лишь наличием в его составе сигналов инициации и терминации транскрипции и трансляции, правильно узнаваемых хозяйской клеткой. Т. к. большинство генов высших эукариот имеет прерывистую экзон-интронную структуру, в результате транскрипции таких генов образуется матричная РНК-предшественник, из которой при последующем сплайсинге выщепляются некодирующие последовательности - интроны и образуется зрелая мРНК. Такие гены не могут экспрессироваться в клетках бактерий, где отсутствует система сплайсинга. Для того чтобы преодолеть это препятствие, на молекулах зрелой мРНК с помощью обратной транскриптазы синтезируют ДНК-копию (кДНК), к которой с помощью ДНК-полимеразы достраивается вторая цепь. Такие фрагменты ДНК, соответствующие кодирующей последовательности генов (уже не разделенной интронами), можно встраивать в подходящий молекулярный вектор.

Зная аминокислотную последовательность целевого полипептида, можно синтезировать кодирующую его нуклеотидную последовательность, получив ген-эквивалент, и встроить его в соответствующий экспрессирующий вектор. При создании гена-эквивалента обычно учитывают свойство вырожденности генетического кода (20 аминокислот кодируются 61 кодоном) и частоту встречаемости кодонов для каждой аминокислоты в тех клетках, в которые планируется вводить этот ген, т. к. состав кодонов может существенно отличаться у разных организмов. Правильно подобранные кодоны могут значительно повысить продукцию целевого белка в реципиентной клетке.

Значение генетической инженерии

Генетическая инженерия значительно расширила экспериментальные границы молекулярной биологии, поскольку стало возможным вводить в различные типы клеток чужеродную ДНК и исследовать ее функции. Это позволило выявлять общебиологические закономерности организации и выражения генетической информации в различных организмах. Данный подход открыл перспективы создания принципиально новых микробиологических продуцентов биологически активных веществ, а также животных и растений, несущих функционально активные чужеродные гены. Многие ранее недоступные биологически активные белки человека, в т. ч. интерфероны, интерлейкины, пептидные гормоны, факторы крови, стали нарабатываться в больших количествах в клетках бактерий, дрожжей или млекопитающих и широко использоваться в медицине. Более того, появилась возможность искусственно создавать гены, кодирующие химерные полипептиды, обладающие свойствами двух или более природных белков. Все это дало мощный импульс к развитию биотехнологии.

Главными объектами генетической инженерии являются бактерии Escherichia coli (кишечная палочка) и Bacillus subtilis (сенная палочка), пекарские дрожжи Saccharomices cereuisiae, различные линии клеток млекопитающих. Спектр объектов генно-инженерного воздействия постоянно расширяется. Интенсивно развиваются направления исследований по созданию трансгенных растений и животных. Методами генетической инженерии создаются новейшие поколения вакцин против различных инфекционных агентов (первая из них была создана на основе дрожжей, продуцирующих поверхностный белок вируса В человека). Большое внимание уделяется разработке клонирующих векторов на основе вирусов млекопитающих и использованию их для создания живых поливалентных вакцин для нужд ветеринарии и медицины, а также в качестве молекулярных векторов для генной терапии раковых опухолей и наследственных заболеваний. Разработан метод прямого введения в организм животных и человека рекДНК, направляющих продукцию в их клетках антигенов различных инфекционных агентов (ДНК-вакцинация). Новейшим направлением генетической инженерии является создание съедобных вакцин на основе трансгенных растений, таких как томаты, морковь, картофель, кукуруза, салат и др., продуцирующих иммуногенные белки возбудителей инфекций. генетический инженерия рекомбинантный молекула

Опасения, связанные с проведением генно-инженерных экспериментов

Вскоре после первых успешных экспериментов по получению рек ДНК группа ученых во главе с П. Бергом предложила ограничить проведение ряда генно-инженерных опытов. Эти опасения основывались на том, что свойства организмов, содержащих чужую генетическую информацию, трудно предсказать. Они могут приобрести нежелательные признаки, нарушить экологическое равновесие, привести к возникновению и распространению необычных заболеваний человека, животных, растений. Кроме того, отмечалось, что вмешательство человека в генетический аппарат живых организмов аморально и может вызвать нежелательные социальные и этические последствия. В 1975 эти проблемы обсуждались на международной конференции в Асиломаре (США). Ее участники пришли к заключению о необходимости продолжения использования методов генетической инженерии, но при обязательном соблюдении определенных правил и рекомендаций. Впоследствии эти правила, установленные в ряде стран, были существенно смягчены и свелись к приемам, обычным в микробиологических исследованиях, созданию специальных защитных устройств, препятствующих распространению биологических агентов в окружающей среде, использованию безопасных векторов и реципиентных клеток, не размножающихся в природных условиях.

Часто под генетической инженерией понимают только работу с рек ДНК, а как синонимы генетической инженерии используются термины «молекулярное клонирование», «клонирование ДНК», «клонирование генов». Однако все эти понятия отражают содержание лишь отдельных генно-инженерных операций и поэтому не эквивалентны термину «генетическая инженерия». В России как синоним генетической инженерии широко используется термин «генная инженерия». Однако смысловое содержание этих терминов различно: генетическая инженерия ставит целью создание организмов с новой генетической программой, в то время как термин «генная инженерия» поясняет, как это делается - путем манипуляции с генами.

Размещено на Allbest.ru

Подобные документы

    Генная инженерия как раздел молекулярной генетики, связанный с целенаправленным созданием новых комбинаций генетического материала. История ее возникновения и развития, этапы генного синтеза. Безопасна ли генная модификация? Примеры ее применения.

    реферат , добавлен 23.11.2009

    Понятие и основные методы генной инженерии. Методика выделения ДНК на примере ДНК плазмид. Принципы действия системы рестрикции-модификации. Перенос и обнаружение клонируемых генов в клетках. Конструирование и введение в клетки рекомбинантных молекул ДНК.

    реферат , добавлен 23.01.2010

    Исследование сущности и предназначения генной инженерии - метода биотехнологии, который занимается исследованиями по перестройке генотипов. Метод получения рекомбинантных, то есть содержащих чужеродный ген, плазмид - кольцевых двухцепочных молекул ДНК.

    презентация , добавлен 19.02.2012

    Суть и задачи генной инженерии, история ее развития. Цели создания генетически модифицированных организмов. Химическое загрязнение как следствие ГМО. Получение человеческого инсулина как важнейшее достижение в сфере генно-модифицированных организмов.

    реферат , добавлен 18.04.2013

    Использование генной инженерии как инструмента биотехнологии с целью управления наследственностью живых организмов. Особенности основных методов и достижений генной инженерии в медицине и сельском хозяйстве, связанные с ней опасности и перспективы.

    доклад , добавлен 10.05.2011

    Генная инженерия как метод биотехнологии, который занимается исследованиями по перестройке генотипов. Этапы процесса получения рекомбинантных плазмид. Конструирование клеток нового типа на основе их культивирования, гибридизации и реконструкции.

    презентация , добавлен 20.11.2011

    Генная инженерия: история возникновения, общая характеристика, преимущества и недостатки. Знакомство с новейшими методами генной инженерии, их использование в медицине. Разработка генной инженерии в области животноводства и птицеводства. Опыты на крысах.

    курсовая работа , добавлен 11.07.2012

    Генетическая инженерия - инструмент биотехнологии для получения рекомбинантных РНК и ДНК, осуществления манипуляций с генами и белковыми продуктами, введения их в другие организмы. Современное состояние науки о наследственности и хромосомных болезнях.

    реферат , добавлен 23.06.2009

    Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.

    реферат , добавлен 23.07.2008

    Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.

Сложно найти в современном мире человека, который ничего не слышал бы об успехах генной инженерии.

Сегодня она является одним из наиболее перспективных путей развития биотехнологий, совершенствования сельскохозяйственного производства, медицины и ряда других отраслей.

Что такое генная инженерия?

Как известно, наследственные признаки любого живого существа записаны в каждой клетке организма в виде совокупности генов – элементов сложных белковых молекул . Вводя в геном живого существа чужеродный ген, можно изменить свойства получаемого организма, причём в нужную сторону: сделать сельскохозяйственную культуру более устойчивой к морозу и болезням, придать растению новые свойства и т.д.

Организмы, полученные в результате такой переделки, называются генно-модифицированными, или трансгенными, а научная дисциплина, занимающаяся исследованием модификаций и разработкой трансгенных технологий – генетической или генной инженерией.

Объекты генной инженерии

Наиболее часто объектами для исследования генной инженерии становятся микроорганизмы, клетки растений и низших животных, однако ведутся исследования и на клетках млекопитающих, и даже на клетках человеческого организма. Как правило, непосредственным объектом исследования является молекула ДНК, очищенная от прочих клеточных веществ. При помощи энзимов ДНК расщепляется на отдельные отрезки, причём важно уметь распознавать и выделять нужный отрезок, переносить его при помощи энзимов и встраивать в структуру другой ДНК.

Современные методики уже позволяют достаточно свободно манипулировать отрезками генома, размножать нужный участок наследственной цепи и вставлять его на место другого нуклеотида в ДНК реципиента. Накоплен достаточно большой опыт и собрана немалая информация по закономерностям строения наследственных механизмов. Как правило, преобразованиям подвергаются сельскохозяйственные растения, что уже позволило существенно повысить результативность основных продовольственных культур.

Для чего нужна генная инженерия?

К середине ХХ века традиционные методы перестали устраивать учёных, так как это направление обладает рядом серьёзных ограничений:

  • невозможно скрещивать неродственные виды живых существ;
  • процесс рекомбинации генетических признаков остаётся неуправляемым, и необходимые качества у потомства появляются в результате случайных комбинаций, при этом очень большой процент потомства признаётся неудачным и отбрасывается в ходе селекции;
  • точно задать нужные качества при скрещивании невозможно;
  • селекционный процесс занимает годы и даже десятилетия.



Естественный механизм сохранения наследственных признаков является чрезвычайно стойким, и даже появление потомства с нужными качествами не даёт гарантии сохранения этих признаков в последующих поколениях.

Генная инженерия позволяет преодолеть все вышеперечисленные затруднения. С помощью трансгенных технологий можно создавать организмы с заданными свойствами, заменяя отдельные участки генома другими, взятыми у живых существ, принадлежащих к другим видам. При этом сроки создания новых организмов существенно сокращаются. Необязательно закреплять нужные признаки, делая их наследуемыми, так как всегда есть возможность генетически модифицировать следующие партии, поставив процесс буквально на поток.

Этапы создания трансгенного организма

  1. Выделение изолированного гена с нужными свойствами. Сегодня для этого существуют достаточно надёжные технологии, есть даже специально подготовленные библиотеки генов.
  2. Ввод гена в вектор для переноса. Для этого создаётся специальная конструкция – трансген, с одним или несколькими отрезками ДНК и регуляторными элементами, который встраивается в геном вектора и подвергается клонированию при помощи лигаз и рестриктаз. В качестве вектора обычно используются кольцеобразные бактериальные ДНК – плазмиды.
  3. Встраивание вектора в организм реципиента. Этот процесс скопирован с аналогичного природного процесса встраивания ДНК вируса или бактерии в клетки носителя и действует таким же образом.
  4. Молекулярное клонирование. При этом клетка, подвергшаяся модификации, успешно делится, производя множество новых дочерних клеток, которые содержат изменённый геном и синтезируют белковые молекулы с заданными свойствами.
  5. Отбор ГМО. Последний этап ничем не отличается от обычной селекционной работы.

Безопасна ли генная инженерия?

Вопрос, насколько безопасны трансгенные технологии, периодически поднимается как в научной среде, так и в СМИ, далёких от науки. Однозначного ответа на него нет до сих пор.

Во-первых, генная инженерия остаётся ещё достаточно новым направлением биотехнологий, и статистика, позволяющая делать объективные выводы об этой проблеме, пока что не успела накопиться.

Во-вторых, огромные вложения в генную инженерию со стороны транснациональных корпораций, занимающихся производством продуктов питания, могут служить дополнительной причиной отсутствия серьёзных исследований.


Впрочем, в законодательствах многих стран появились нормы, обязывающие производителей указывать наличие продуктов из ГМО на упаковке товаров пищевой группы. В любом случае, генная инженерия уже продемонстрировала высокую результативность своих технологий, а её дальнейшее развитие обещает людям ещё больше успехов и достижений.

Генная инженерия – это направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в том числе и не встречающимися в природе, комбинациями наследственных свойств.

Формальной датой рождения генной инженерии считают 1972 год. В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. К этим достижениям следует отнести установление универсальности генетического кода, то есть факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируются одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получить в изолированном виде отдельные гены или ферменты нуклеиновой кислоты, осуществлять in vitro синтез фрагментов нуклеиновых кислот, объединить в единое целое полученные фрагменты. Таким образом, изменение наследственных свойств организма с помощью генной инженерии сводится к конструированию из различных фрагментов нового генетического материала, введение этого материала в рецепиентный организм, создания условий для его функционирования и стабильного наследования.

Генная инженерия бактерий

В 1972 году группа исследователей во главе с американским биохимиком Полом Бергом, работавшим в Стэнфордском университете, что неподалёку от Сан-Франциско в Калифорнии, сообщила о создании вне организма первой рекомбинантной ДНК. Такую молекулу часто называют гибридной, так как она состоит из ДНК-фрагментов различных организмов.

Первая рекомбинантная молекула ДНК состоит из фрагмента ДНК бактериофага кишечной палочки (E. coli), группы генов самой этой бактерии, ответственные за сбраживание сахара галактозы, и полной ДНК вируса SV40, вызывающего развитие опухолей у обезьян. Такая рекомбинантная структура теоретически могла обладать функциональной активностью в клетках, как кишечной палочки, так и обезьяны, ведь в неё входила часть ДНК фага, обеспечивающая её способность реплицироваться (самокопироваться) в E. coli, и вся ДНК SV40, реплицирующаяся в клетках обезьяны.

Фактически это была первая гибридная молекула ДНК, которая могла бы, как челнок, «ходить» между бактерией и животным. Но именно это экспериментально не проверил П.Берг и его коллеги.

Учёные разных стран, развивая идеи П.Берга, создали in vitro функционально активные гибридные ДНК. Первыми эту задачу решили американцы Стэнли Коен из Стэнфордского университета и его коллега Герберт Бойер из Калифорнийского университета в Сан-Франциско. В их работах появился новый и очень важный «инструмент» всех последующих генно-инженерных работ – вектор.

Основные методы генной инженерии бактерий были разработаны в начале 70-х годов прошлого века. Их суть заключается во введении в организм нового гена. Наиболее распространённый из них – конструирование и перенос рекомбинантных ДНК.

Генная инженерия растений

При введении новых генов в эукариотические клетки, например, растительные, возникает немало трудностей. Одна из них заключается в том, что генетическое строение растений намного сложнее и менее изучено, чем строение бактерий, остававшихся до недавнего времени основным объектом генных инженеров. К тому же изменить генотип всех клеток многоклеточного организма невозможно. Значительно затрудняется перенос векторных систем прочная целлюлозная оболочка, которая покрывает клетки растений.

Несмотря на сказанное генная инженерия растений применяется в сельском хозяйстве, особенно в растениеводстве. Это стало возможным, во-первых, потому, что изолированные от многоклеточного организма клетки растений могут расти и размножаться на искусственных питательных средах, то есть in vitro или вне организма. Во-вторых, установлено, что ядра зрелых растительных клеток содержат всю информацию, необходимую для кодирования целого организма. Так, если клетки какого-либо растения пометить в подходящий растительный раствор, то их можно вновь заставить делиться и образовывать новые растения. Это свойство растительных клеток, связанное со способностью к регенерации уже после достижения ими зрелости и специализации, названо тотипотентностью.

Использование почвенных агробактерий

Один их эффективных способов переноса генов в растения – использование в качестве вектора почвенных бактерий, прежде всего, Agro bacterium tumefaciens («полевая бактерия, вызывающая рак растений»). Эта бактерия была выделена в 1897г. из опухоли винограда. Она заражает многие двудольные растения и вызывает у них образование больших наростов – корончатых галлов.

Патогенные штаммы этой агробактерии в отличие от непатогенных содержат крупную плазмиду, специально предназначенную для переноса генов из бактериальной клетки в растительную. Плазмида получила название Ti, то есть вызывающая опухоль. Именно в неё обычно встраивается подготовленный для переноса ген.

Кроме A. tumefaciens для введения новых генов в растения используют также бактерию вида A. Rhizogenes. Они вызывают у двудольных растений очень мелкие опухоли, из которых вырастает множество корней. Болезнь, которую вызывают эти ризогенные агробактерии, называют «бородатый» или «волосатый» корень. В них обнаружены плазмиды, похожие на Ti. Они названы Ri или корнеиндуцирующими.

В последние годы Ri-плазмиды применяются в генной инженерии растений не менее широко, чем Ti-плазмиды. Это объясняется, прежде всего, тем, что клетки корончатых галлов плохо растут на искусственно питательных средах и из них не удаётся вырастить целые растения. Напротив, клетки «бородатого» корня хорошо культивируются и регенерируются.

Использование вирусов

Вирусы также достаточно часто используются для конструирования векторов, обеспечивающих перенос новых генов в растения. Чаще других для этой цели выделяют вирус мозаики цветной капусты. В природе он заражает только крестоцветные, однако известно, что в экспериментальных условиях способен поражать и другие виды растений.

Геном вируса мозаики представляет собой небольшую двунитевую кольцевую ДНК. Некоторые из его генов могут быть заменены на другие, интересующие исследователя. Проникая в растительную клетку, вирус вносит в неё не только свою собственную ДНК, но и встроенный в неё чужеродный ген.

Векторной системой, способной переносить новые гены в растения, могут быть и вирусы, у которых генетический материал представлен РНК. Вирусы этой группы способны с высокой частотой проникать в растительные клетки, активно в них размножаться и тем самым обеспечивать высокий уровень экспрессии введённых генов вследствие увеличения их количества.

Конструирование рекомбинантной ДНК

Техника встраивания генов в векторы предназначенных для растений аналогична той, что используется для бактериальных клеток. Плазмидная ДНК и ДНК вирусов разрезается рестриктазами с образованием «липких» концов. Если применяется фермент, образующий тупые концы, пользуются короткими фрагментами ДНК. Встраивая новый ген в подготовленный плазмидный или вирусный вектор с помощью ДНК-лигазы, получают рекомбинантную ДНК.

Направления генной инженерии растений

Основные направления генной инженерии растений связаны с созданием культур, устойчивых к насекомым-вредителям, гербицидам и вирусам, способных к азотфиксации, а также с повышением качества и количества продуктов.

Растения устойчивые к насекомым-вредителям

Насекомые-вредители могут приводить к значительному снижению урожая различных сельскохозяйственных культур. Для борьбы с ними используются химические вещества,

называемые инсектицидами. Первым инсектицидом, завоевавшим всемирное признание, оказалась бордосская жидкость.

Помимо препаратов, синтезированных химически, известны инсектициды, полученные на основе естественных врагов насекомых – бактерий и грибов. Многие годы в мире применяют инсектициды бактериального происхождения – препараты спор, которые образует почвенная бактерия Bacillus thuringiensis («тюрингская бацилла», или сокращённо Bt). Инсектицидная активность этих спор связана с находящимися в них ядовитыми кристаллами белка эндотоксина. Проглотив такую спору, гусеница вскоре погибает от паралича кишечника.

Преимущество инсектицидов этого типа в том, что они не токсичны для человека и животного, их легко отмыть и инактивировать. Недостаток таких инсектицидов – сравнительно короткий период активности в полевых условиях. Эффективность их действия при распылении на растения колеблется, и её трудно прогнозировать. Всё это обуславливает необходимость повторных обработок.

Новое направление в борьбе с насекомыми-вредителями – создание на основе генно-инженерной технологии устойчивых к ним трансгенных растений. Успешными оказались исследования Марка ван Монтегю и его коллег из Гентского университета, результаты которых они опубликовали в работе «Трансгенные растения, защищённые от нападения насекомых» (1987).

Они выделили ген, кодирующий синтез белка эндотоксина, из ДНК тюрингской бациллы и вставили его в векторную Ti-плазмиду бактерии A. tumefaciens. Этой агробактерией заражали диски, вырезанные из кусочков листьев табака. Трансформированную растительную ткань выращивали на питательной среде определённого химического состава, которая обеспечивала рост и развитие трасгенных растений с листьями, содержащими белок эндотоксин. При попадании в кишечник некоторых видов насекомых эндотоксин связывается с их внутренней поверхностью и повреждает эпителий, в результате переваренная пища не всасывается и насекомое погибает от голода.

В последние годы ген бактериального токсина удалось ввести в клетки многих растений. В частности, специалисты компании «Monsanto» создали картофель «New Leaf» («Новый лист»), устойчивый к колорадскому жуку, Bt-кукурузу и Bt-хлопок, сою «Roundup Ready» и др. Однако использование Bt-культур вызывает сомнения из-за здоровья человека и безопасность окружающей среды. Так, многие задаются вопросом: если колорадский жук не ест ботву, полезен ли такой картофель? Нет уверенности в том, что растительная продукция с «генными добавками» не повлияет отрицательно на будущее поколение.

При этом перенос пыльцы генетически модифицированных культур на растения соседних полей приведёт к их генетическому загрязнению, последствия которого трудно предсказуемы. На биологическое разнообразие может повлиять гибель полезных насекомых, для которых Bt-культуры оказались опасными. Кроме того, возможно, появятся супервредители, так как исходные виды насекомых достаточно быстро могут приобрести устойчивость к бактериальному эндотоксину.

Растения, устойчивые к вирусам

Создание вирусоустойчивых сортов – ещё одно направление генной инженерии растений.

Для создания таких сельскохозяйственных растений используется так называемая перекрёстная защита. Сущность этого является в том, что растения, инфицированные одним видом вируса, становятся устойчивыми к другому, родственному вирусу, так как происходит своего вида вакцинация. В растения вводят ген ослабленного штамма вируса, что предотвращает его поражение более вирулентным (вызывающим заболевание) штаммом того же или близкородственного вируса.

Таким геном-защитником может служить ген, кодирующий у вируса синтез белка оболочки, окружающий нуклеиновую кислоту. Этот ген используется для создания in vitro с помощью обратной транскриптазы к ДНК - ДНК-копии. К ней присоединяют необходимые регуляторные элементы и с помощью специальным образом подготовленной Ti-плазмидой агробактерии переносят в растения. Трансформированные растительные клетки синтезируют белок оболочки вируса, а выращенные из них трансгенные растения либо совсем не заражаются его более вирулентными штаммами, либо дают слабую и запоздалую реакцию на вирусную инфекцию.

Это один из механизмов защитного действия вирусного гена, который до сих пор не вполне ясен и может сопровождаться нежелательными последствиями.

Генетическое модифицирование – новая версия сельского хозяйства

Генетическое модифицирование сельского хозяйства основано на использовании высокопродуктивных сортов растений или пород животных, полученных на основе генной селекции. Именно этим благородным делом занимаются десятилетиями генетики-селекционеры. Но их возможности ограничены рамками скрещиваний – скрещиваться и давать плодовитое потомство могут только особи, принадлежащие как правило, к одному и тому же виду. Картофель и кукуруза не обладают способностью поражать колорадского жука и кукурузного стеблевого мотылька, а безвредная для человека и животных бактерия Bacillus thuringinesis может их убивать. Генетики скрестить бациллу с картофелем не могут, а генные инженеры - могут. Генетическая селекция улучшает количественные характеристики сорта или породы (урожайность, устойчивость к заболеваниям, надои и др.); генная инженерия способна создать новое качество – перенести ген, его кодирующий, из одного биологического вида в другой, в частности, ген инсулина от человека в дрожжи. И генетически модифицированные дрожжи станут фабрикой инсулина.

Считается, что единственное принципиальное препятствие, стоящее перед генными инженерами,- это или их ограниченная фантазия, или ограниченное финансирование. Непреодолимых природных ограничений в генной инженерии, похоже, нет.

Генная инженерия: от анализа к синтезу

Как мы уже знаем именно в 1972г. Пол Берг впервые объединил в пробирке в единое целое два гена, выделенных из разных организмов. И получил «молекулярный» гибрид, или рекомбинантную ДНК, которая в природных условиях никак образоваться не могла. Затем такую рекомбинантную ДНК внесли в бактериальные клетки, создав, таким образом, первые трансгенные организмы, несущие гены бактерии и обезьяны, точнее онкогенного вируса обезьяны.

Затем были сконструированы микробы, несущие гены мушки дрозофилы, кролика, человека. Это вызвало тревогу.

Несколько ведущих американских учённых, в том числе сам Пол Берг, опубликовали в журнале «Сайенс» письмо, в котором призывали приостановить работы по генной инженерии до тех пор, пока не будут выработаны правила техники безопасности по обращению с трансгенными организмами. Предполагалось, что организмы, которые несут чужеродные гены, могут иметь свойства, опасные для человека и среды его обитания. Чисто умозрительно высказывалось мнение, что трансгенные организмы, созданные без учёта их вероятных экологических характеристик и не прошедшие совместной эволюции с природными организмами, «вырвавшись из пробирки на свободу», смогут бесконтрольно и неограниченно размножиться. Это приведёт к вытеснению природных организмов из мест их естественного обитания; последующей цепной реакции нарушений экологического равновесия; сокращению биоразнообразия; активации дремлющих, ранее не известных патогенных микроорганизмов; возникновению эпидемий ранее не известных болезней человека, животных и растений; «побегу» чужеродных генов из трансгенных организмов; хаотическому переносу генов в биосфере; появлению монстров, всё уничтожающих.

Две версии будущего: трансгенный рай или трансгенный апокалипсис

Кроме опасений биологического и экологического характера стали высказываться опасения нравственные, этические, философские, религиозные.

В 1973-1974гг. в дискуссию включились американские политики. В итоге на генно-инженерные работы был наложен временный мораторий – «запрет до выяснения обстоятельств». В течение запрета на основании всех имеющихся знаний следовало оценить все потенциальные опасности генной инженерии и сформулировать правила техники безопасности. В 1976г. Правила были созданы, запрет снят. По мере всё ускоряющегося развития строгость правил безопасности всё время снижалась. Первоначальные страхи оказались сильно преувеличенными.

В итоге 30-летнего мирового опыта генной инженерии стало ясно, что в процессе «мирной» генной инженерии что-либо мирного возникнуть не может. Первоначальная техника безопасности работ с трансгенными организмами исходила из того, что созданные химеры могут быть опасны, как чума, чёрная оспа, холера или сибирская язва. Поэтому с трансгенными микробами работали, словно они патогенны, в специальных инженерных сооружениях. Но постепенно становилось всё более очевидным: риск сильно преувеличен.

В общем, за все 30 лет интенсивного и всё расширяющегося применения генной инженерии ни одного случая возникновения опасности, связанной с трансгенными организмами, зарегистрировано не было.

Возникла новая отрасль промышленности – трансгенная биотехнология, основанная на конструировании и применении трансгенных организмов. Сейчас в США около 2500 генно-инженерных фирм. В каждой из них работают высококвалифицированные специалисты, которые конструируют организмы на основе вирусов, бактерий, грибов, животных, в том числе насекомых.

Когда речь идёт об опасности или безопасности трансгенных организмов и продуктов из них полученных, то самые распространённые точки зрения основываются преимущественно на «общих соображениях и здравом смысле». Вот, что обычно говорят те, кто против:

  • природа устроена разумно, любое вмешательство в неё всё только ухудшит;
  • поскольку сами учёные не могут со 100%-ной гарантией предсказать всё, особенно
  • отдалённые последствия применения трансгенных организмов, не надо этого делать вообще.

А вот аргументы тех, кто выступает за:

  • в течение миллиардов лет эволюции природа успешно «перепробовала» все
  • возможные варианты создания живых организмов, почему же деятельность человека по
  • конструированию изменённых организмов должна вызывать опасения?
  • в природе постоянно происходит перенос генов между разными организмами (в
  • особенности между микробами и вирусами), так что ничего принципиально нового
  • трансгенные организмы в природу не добавят.

Дискуссия о выгодах и опасностях применения трансгенных организмов обычно концентрируется вокруг главных вопросов о том, опасны ли продукты, полученные из трансгенных организмов и опасны ли сами трансгенные организмы для окружающей среды?

Защита здоровья и окружающей среды, или бесчестная борьба за экономические интересы?

Нужна ли международная организация, которая на основе предварительной экспертизы регулировала бы применение трансгенных организмов? Чтобы она разрешала или запрещала выпуск на рынок продуктов, полученных из таких организмов? Ведь семена, тем более пыльца границ не признают.

А если международное регулирование биотехнологии не нужно, не приведёт ли чересполосица национальных правил, регулирующих обращение с трансгенными организмами, к тому, что из стран, где такие правила «либеральны», трансгенные растения «убегут» в страны, где правила «консервативны»?

Даже если большинство стран и договорятся о согласовании правил оценки риска трансгенных организмов, как быть относительно профессиональных и моральных качеств чиновников и экспертов? Будут ли они одинаковыми, например, в США, Германии, Китае, России и в Папуа Новой Гвинее?

Если развивающиеся страны и подпишут, например Всемирную конвенцию о правилах интродукции трансгенных организмов, кто им заплатит за создание и поддержание соответствующих национальных ведомств, за консультации, экспертизу, мониторинг?

Примерно половина всех программ, разработанных ООН, UNIDO, UNEP, направлены на решение проблем, связанных с трансгенными организмами. Есть два главных документа: «Кодекс добровольно принимаемых правил, которые надлежит придерживаться при интродукции (выпуске) организмов в окружающую среду», подготовленный Секретариатом UNIDO и «Протокол по биобезопасности в рамках Конвенции по биологическому разнообразию» (UNEP).

Европейская точка зрения: отсутствие международно-согласованных правил применения трансгенных организмов приведёт к широкомасштабным экспериментам в открытой среде, вредные последствия которых могут быть необратимыми.

Итак, где же истина? Можно ли сделать рациональный выбор между определённой пользой и неопределённым риском? Правильный ответ таков: опасны или безопасны трансгенные растения и продукты на их основе, опасность или безопасность которых пока убедительно не показаны исходя из современного уровня знаний, разумнее избегать их употребления.

Продукты питания, модифицированные методами генной инженерии

Первое опытное растение было получено в 1983 году в институте растениеводства в Кёльне. Через 9 лет в Китае начали выращивать трансгенный табак, который не портили насекомые-вредители. Первыми коммерческими трансгенами были помидоры сорта «Flavr Savr», созданные компанией «Calgene» и появившиеся в супермаркетах США в 1994г. Однако некоторые проблемы, связанные с их производством и транспортировкой, привели к тому, что компания была вынуждена уже через три года снять сорт с производства. В дальнейшем были получены многие сорта различных сельскохозяйственных культур с искусственно изменённым генетическим кодом. Среди них наиболее распространена соя (коммерческое выращивание начато с 1995г.), она составляет свыше половины от общего урожая; на втором месте – кукуруза, а за ними – хлопок, масленичный рапс, табак и картофель.

Мировые лидеры в выращивании трансгенных растений – США, Аргентина, Канада и Китай. В России уже существует несколько экспериментальных «закрытых» полей с генетически модифированными (ГМ) культурами. По сообщению директора Центра «Биоинженерии» РАН академика К.Скрябина, некоторые из них заняты картофелем, устойчивым к колорадскому жуку и полученным на основе трёх наиболее распространенных российских сортов – «Луговского», «Невского» и «Елизаветы».

Генетически модифицированные растения используются для производства, как продуктов питания, так и пищевых добавок. Например, из сои получается соевое молоко, которое заменяет натуральное для многих грудных детей. ГМ сырьё обеспечивает большую часть потребности в растительном масле и пищевом белке. Соевый лецитин (Е322) используется как эмульгатор и стабилизатор в кондитерской промышленности, а шкурки соевых бобов – при производстве отрубей, хлопьев и закусок. Помимо этого, ГМ-соя широко применяется в пищевой промышленности и в качестве дешёвого наполнителя. Она в значительном количестве входит в состав таких продуктов, как хлеб, колбаса, шоколад и др.

Модифицированные картофель и кукурузу используют для приготовления чипсов, а также перерабатывают на крахмал, который применяют в качестве загустителей, студнеобразователей и желирующих веществ в кондитерской и хлебопекарной промышленности, а также при производстве многих соусов, кетчупов, майонезов. Кукурузное и рапсовое масло используют в виде добавок в маргарин, выпечку, бисквиты и т.д.

Несмотря на то, что на мировом рынке всё больше появляется продуктов, полученных с использованием генетически модифицированных источников, потребители всё-таки настороженно относятся к ним, и не торопятся переходить на «пищу Франкенштейна».

Проблема продуктов питания, модифицированных на основе генной инженерии, вызвала бурную полемику в обществе. Главный аргумент сторонников генетической пищи – характеристики самих сельскохозяйственных культур, которым биоинженеры прибавили немало полезных для потребителя свойств. Они менее прихотливы и более устойчивы к болезням, насекомым-вредителям, а главное – к пестицидам, которыми обрабатываются поля и чей вред на человеческий организм давно доказан. Продукты из них лучшего качества и товарного вида, обладают повышенной пищевой ценностью и дольше хранятся.

Так, из «улучшенных» генными инженерами кукурузы, соевых бобов и рапса получается растительное масло, в котором снижено количество насыщенных жиров. В «новых» картофеле и кукурузе больше крахмала и меньше воды. Такой картофель при жарке требует немного масла, из него получаются воздушные чипсы и картофель фри, который сравнительно с немодифицированными продуктами легче усваивается. «Золотой» рис, полученный в 1999г., обогащён каротином для профилактики слепоты у детей развивающихся стран, Гед рис – основной продукт питания.

Ещё недавно прогнозы генных инженеров о «съедобных вакцинах» выглядели как полная фантастика. Однако уже выращен табак, в генетический код, которого «вмонтирован» человеческий ген, отвечающий за выработку антител к вирусу кори. В ближайшем будущем, по утверждению учёных, будут созданы другие подобные растения с противовирусной начинкой. В перспективе это может стать одним из главных путей будущей иммунопрофилактики.

Основной вопрос: безопасны ли для человека продукты питания, полученные на основе генетически модифицированных источников, пока остается без однозначного ответа, хотя в последние годы стали известны результаты некоторых исследований, которые свидетельствуют о том, что генетически модифицированные продукты отрицательно влияют на живые организмы.

Так, британский профессор Арпад Пуштай (Arpad Pusztai), работавший в Государственном Институте Роветт (Rowett) города Абердин, в апреле 1998г. заявил в телевизионном интервью, что проведённые им эксперименты выявили необратимые изменения в организме крыс, питавшихся генетически модифицированным картофелем. Они страдали угнетением иммунной системы и различными нарушениями деятельности внутренних органов. Заявление учёного стало поводом для его увольнения с работы за «распространение заведомо ложной псевдонаучной информации».

Однако в феврале 1999г. независимая группа из 20 известных учёных после тщательного изучения опубликовала заключение о работе Арпада Пуштая, в котором полностью подтверждалась достоверность полученных им результатов. В связи с этим министр сельского хозяйства Великобритании был вынужден признать эксперименты заслуживающими внимания и рассмотреть вопрос о запрещении продаж генетически модифицированных продуктов без всестороннего исследования и предварительного лицензирования.

Помимо этого, выявлено, что один из сортов генетически модифицированной сои опасен для людей, он давал аллергию на орехи. Этот генно-модифицированный продукт получен одной из крупнейших компаний по производству семян «Pioneer Hybrid International» после введения в соевую ДНК гена бразильского ореха, запасной белок, которого богат такими аминокислотами, как цистеин и метионин. Компания была вынуждена выплатить компенсацию пострадавшим, а проект свернуть.

Компоненты, содержащиеся в генетически модифицированных продуктах, могут быть не только аллергенами, но и высокотоксичными, то есть наносящими вред живому организму химическими веществами. Так, через несколько лет применения появились сообщения о серьёзных побочных эффектах от использования пищевой добавки, известной как аспартам (Е 951).

По химическому строению аспартам – метилированный дипептид, состоящий из остатков двух аминокислот – аспарагиновой кислоты и фенилаланина. Добавленный в пищу в ничтожных количествах, он полностью заменяет сахар (слаще сахара почти в 200 раз). В связи с этим аспартам относят к классу подсластителей, то есть низкокалорийных веществ несахарной природы, придающих пищевым продуктам и готовой пищи сладкий вкус. Часто подсластители путают с сахарозаменителями, которые по химической природе представляют собой углеводы и обладают повышенной калорийностью.

Аспартам выпускается под различными торговыми марками: «NutraSweet», «Sucrelle», «Equal», «Spoonful», «Canderel», «Holy Line» и др. На российском рынке его можно встретить также в составе многокомпонентных смесей подсластителей, таких, как «аспасвит», «аспартин», «сламикс», «евросвит», «сладекс» и др.

Долгие годы, считаясь совершенно безвредным веществом, аспартам был допущен к применению в пищевом и фармацевтическом производстве более чем в 100 странах мира. Его рекомендовали больным сахарным диабетом, а также тем, кто страдал ожирением или опасался кариеса. Он применяется при производстве более 5 тыс. наименований продуктов: безалкогольных напитков, йогуртов, молочных десертов, мороженого, кремов, жевательной резинки и других.

Особенно удобен аспартам для подслащивания пищевых продуктов, которые не требуют тепловой обработки. Кроме того, его можно использовать при моментальной пастеризации и быстром охлаждении. Однако в продуктах, которые подвергаются нагреванию, его применение нецелесообразно. Это связано с тем, что при всех замечательных свойствах у данного подсластителя есть два недостатка: он плохо растворяется в воде и не выдерживает высокой температуры. Сказанное усложняет процесс приготовления пищевых продуктов и ограничивает использование аспартама в таких областях, как хлебопекарная и другие виды пищевой промышленности, где технологически требуется повышение температуры.

При продолжительном воздействии температуры выше 30 С компоненты аспартама разделяются, причём сладость теряется, кроме того, метанол превращается в формальдегид. Последнее вещество с резким запахом вызывает свёртываемость белковых веществ и относится к категории ядовитых. В дальнейшем из формальдегида образуется муравьиная кислота, вызывающая нарушение кислотно-щелочного равновесия. Метаноловая токсичность по симптомам похожа на рассеянный склероз, поэтому больным нередко ошибочно ставили этот диагноз. Однако если рассеянный склероз не является смертельным диагнозом, то метаноловая токсичность смертельна.

Образовавшийся фенилаланин способен оказать чрезвычайно токсичное действие, особенно на нервную систему. Существует наследственное заболевание, обусловленное его избыточностью и известно как фенилкетонурия. Дети, родившиеся с названным наследственным недугом, подвержены судорогам и страдают умственной отсталостью. Причина этой болезни во врождённом дефекте фермента фенилаланингидроксилазы.

Последние достижения медицинской генетики установили, что эффективно усваивать фенилаланин могут даже не все здоровые люди. Поэтому дополнительное введение в организм данной аминокислоты не просто значительно повышает её уровень в крови, а представляет серьёзную опасность для работы мозга.

В связи со сказанным, аспартам противопоказан больным гомозиготной фенилкетонурией, и о его присутствии должно быть указано на этикетке пищевого продукта. Однако обычно запись «содержит фенилаланин, противопоказан для больных фенилкетонурией» делается таким мелким шрифтом, что её редко кто читает. Но, тем не менее, аспартам – пока единственный генетически созданный химический препарат на американском рынке, имеющий чёткую маркировку. Это оказалось возможным только после того, как стало известно относительно большое число явных подтверждений опасной токсичности аспартама, а наиболее популярные газеты и журналы США не назвали его «сладкой отравой».

Устойчивость к антибиотикам – ещё одна широко обсуждаемая проблема, связанная с генетически модифицированной пищей. В биоинженерной технологии гены устойчивости к этим лекарственным препаратам много лет используются в качестве маркеров при подготовке векторных систем, трансформирующих растительную клетку. Так, при выведении томатов сорта «Flavr Savr» использовался ген устойчивости к каналицину, а генетически модифицированной кукурузы – к ампициллину.

К сожалению, до сих пор не найден способ удаления этих маркерных генов после трансформации. Их наличие в генетически модифицированных продуктах и вызывает беспокойство медиков. Причина в том, что маркерные гены устойчивости к антибиотикам по каким-либо причинам могут быть не переварены со всей оставшейся ДНК и попадут в геном бактерий, обитающих в кишечнике человека. После выведения бактерий из организма с фекалиями, такие гены распространятся в окружающей среде и передадутся другим болезнетворным бактериям, которые станут невосприимчивыми к действию антибиотиков этой группы. Появление подобных супермикробов может привести к возникновению болезней, которые невозможно будет вылечить имеющимися лекарственными средствами.

Генная инженерия - это метод биотехнологии, который занимается исследованиями по перестройке генотипов. Генотип является не просто механическая сумма генов, а сложная, сложившаяся в процессе эволюции организмов система. Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим.

Носителями материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования не химические, а функциональные. С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации - генов. В основе действия гена лежат его способность через посредство РНК определять синтез белков. В молекуле ДНК как бы записана информация, определяющая химическую структуру белковых молекул. Ген - участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген - один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.

Перестройка генотипов, при выполнении задач генной инженерии, представляет собой качественные изменения генов не связанные с видимыми в микроскопе изменениями строения хромосом. Изменения генов прежде всего связано с преобразованием химической структуры ДНК. Информация о структуре белка, записанная в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в синтезируемой молекуле белка. Изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.

Наиболее распространенным методом генной инженерии является метод получения рекомбинантных, т.е. содержащих чужеродный ген, плазмид. Плазмиды представляют собой кольцевые двухцепочные молекулы ДНК, состоящие из нескольких тысяч пар нуклеотидов. Этот процесс состоит из нескольких этапов.

1. Рестрикция - разрезание ДНК, например, человека на фрагменты.

2. Лигирование - фрагмент с нужным геном включают в плазмиды и сшивают их.

3. Трансформация -введение рекомбинантных плазмид в бактериальные клетки. Трансформированные бактерии при этом приобретают определенные свойства. Каждая из трансформированных бактерий размножается и образует колонию из многих тысяч потомков - клон.

4. Скрининг - отбор среди клонов трансформированных бактерий тех, которые плазмиды, несущие нужный ген человека.

Весь этот процесс называется клонированием. С помощью клонирования можно получить более миллиона копий любого фрагмента ДНК человека или другого организма. Если клонированный фрагмент кодирует белок, то экспериментально можно изучить механизм, регулирующий транскрипцию этого гена, а также наработать этот белок в нужном количестве. Кроме того, клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма. Этим можно добиться, например, высокие и устойчивые урожаи благодаря введенному гену, обеспечивающему устойчивость к ряду болезней. Если ввести в генотип почвенных бактерий гены других бактерий, обладающих способностью связывать атмосферный азот, то почвенные бактерии смогут переводить этот азот в связанный азот почвы. Введя в генотип бактерии кишечной палочки ген из генотипа человека, контролирующий синтез инсулина, ученые добились получения инсулина при посредстве такой кишечной палочки. При дальнейшем развитии науки станет возможным введение в зародыш человека недостающих генов, и тем самым позволит избежать генетических болезней.

Эксперименты по клонированию животных ведутся давно. Достаточно убрать из яйцеклетки ядро, имплантировать в нее ядро другой клетки, взятой из эмбриональной ткани, и вырастить ее - либо в пробирке, либо в чреве приемной матери. Клонированная овечка Доли была создана нетрадиционным путем. Ядро из клетки вымени 6-летней взрослой овцы одной породы пересадили в безъядерное яйцо овцы другой породы. Развивающийся зародыш поместили в овцу третей породы. Так как родившаяся овечка получила все гены от первой овцы - донора, то является ее точной генетической копией. Этот эксперимент открывает массу новых возможностей для клонирования элитных пород, взамен многолетней селекции.

Ученые Техасского университета смогли продлить жизнь нескольких типов человеческих клеток. Обычно клетка умирает, пережив около 7-10 процессов деления, а они добились сто делений клетки. Старение, по мнению ученых, происходит из-за того, что клетки при каждом делении теряют теломеры, молекулярные структуры, которые располагаются на концах всех хромосом. Ученые имплантировали в клетки открытый ими ген, отвечающий за выработку теломеразы и тем самым сделали их бессмертными. Возможно это будущий путь к бессмертию.

Еще с 80-х годов появились программы по изучению генома человека. В процессе выполнения этих программ уже прочитано около 5 тысяч генов (полный геном человека содержит 50-100 тысяч). Обнаружен ряд новых генов человека. Генная инженерия приобретает все большее значение в генотерапии. Потому, что многие болезни заложены на генетическом уровне. Именно в геноме заложена предрасположенность ко многим болезням или стойкость к ним. Многие ученые считают, что в XXI веке будет функционировать геномная медицина и генная инженерия.

С помощью которых осуществляется направленное комбинирование генетической информации любых организмов. Генетическая инженерия (Г. и.) позволяет преодолевать природные межвидовые барьеры, препятствующие обмену генетической информацией между таксономически удалёнными видами организмов и создавать клетки и организмы с несуществующими в природе сочетаниями генов, с заданными наследуемыми свойствами.

Главным объектом генно-инженерного воздействия является носитель генетической информации - дезоксирибонуклеиновая кислота (ДНК), молекула которой обычно состоит из двух цепей. Строгая специфичность спаривания пуриновых и пиримидиновых оснований обусловливает свойство комплементарности - взаимного соответствия нуклеотидов в двух цепях. Создание новых сочетаний генов оказалось возможным благодаря принципиальному сходству строения молекул ДНК у всех видов организмов, а фактическая универсальность генетич. кода делает возможной экспрессию чужеродных генов (проявление их функциональной активности) в любых видах клеток. Этому способствовало также накопление знаний в области химии , выявление молекулярных особенностей организации и функционирования генов (в т.ч. установление механизмов регуляции их экспрессии и возможности подчинения генов действию «чужих» регуляторных элементов), разработка методов секвенирования ДНК, открытие полимеразной цепной реакции, позволившей быстро синтезировать любой фрагмент ДНК.

Важными предпосылками для появления Г.и. явились: открытие плазмид, способных к автономной репликации и переходу из одной бактериальной клетки в другую, и явления трансдукции - переноса некоторых генов бактериофагами , что позволило сформулировать представление о векторах - молекулах-переносчиках генов.

Огромное значение в развитии методологии Г.и. сыграли ферменты, участвующие в преобразовании нуклеиновых кислот: рестриктазы (узнают в молекулах ДНК строго определенные последовательности (сайты) и «разрезают» двойную цепь в этих местах), ДНК-лигазы (ковалентно связывают отдельные фрагменты ДНК), обратная транскриптаза (синтезирует на матрице РНК комплементарную копию ДНК, или кДНК) и др. Только при их наличии создание искусств. структур стало технически выполнимой задачей. Ферменты используются для получения индивидуальных фрагментов ДНК (генов) и создания молекулярных гибридов - рекомбинантных ДНК (рекДНК) на основе ДНК плазмид и вирусов . Последние доставляют нужный ген в клетку хозяина, обеспечивая там его размножение (клонирование) и образование конечного продукта гена (его экспрессию).

Принципы создания рекомбинантных молекул ДНК

Термин «Г. и.» получил распространение после того, как в 1972 П. Бергом с сотр. впервые была получена рекомбинантная ДНК, представлявшая собой гибрид, в котором были соединены фрагменты ДНК бактерии кишечной палочки, её вируса (бактериофага λ) и ДНК обезьяньего вируса SV40. В 1973 С. Коэн с сотр. использовали плазмиду pSC101 и рестриктазу (Eco RI), которая разрывает её в одном месте таким образом, что на концах двухцепочечной молекулы ДНК образуются короткие комплементарные одноцепочечные «хвосты» (обычно 4-6 нуклеотидов). Их назвали «липкими», поскольку они могут спариваться (как бы слипаться) друг с другом. Когда такую ДНК смешивали с фрагментами чужеродной ДНК, обработанной той же рестриктазой и имеющей такие же липкие концы, получались новые гибридные плазмиды, каждая из которых содержала по крайней мере один фрагмент чужеродной ДНК, встроенной в Eco RI-сайт плазмиды. Стало очевидным, что в такие плазмиды можно встраивать фрагменты разнообразных чужеродных ДНК, полученных как из микроорганизмов, так и из высших эукариот.

Основная современная стратегия получения рекДНК сводится к следующему:

  1. в ДНК плазмиды или вируса, способных размножаться независимо от хромосомы , встраивают принадлежащие др. организму фрагменты ДНК, содержащие определ. гены или искусственно полученные последовательности нуклеотидов, представляющие интерес для исследователя;
  2. образующиеся при этом гибридные молекулы вводят в чувствительные прокариотические или эукариотические клетки, где они реплицируются (размножаются, амплифицируются) вместе со встроенными в них фрагментами ДНК;
  3. отбирают клоны клеток в виде колоний на специальных питательных средах (или вирусов - в виде зон просветления - бляшек на слое сплошного роста клеток бактерий или культур тканей животных), содержащие нужные типы молекул рекДНК и подвергают их разностороннему структурно-функциональному изучению.

Для облегчения отбора клеток, в которых присутствует рекДНК, используют векторы, содержащие один и более маркеров. У плазмид, например, такими маркерами могут служить гены устойчивости к антибиотикам (отбор клеток, содержащих рекДНК, проводят по их способности расти в присутствии того или иного антибиотика). РекДНК, несущие нужные гены, отбирают и вводят в реципиентные клетки. С этого момента начинается молекулярное клонирование - получение копий рекДНК, а значит и копий целевых генов в её составе. Только при возможности разделения всех трансфицированных или инфицированных клеток каждый клон будет представлен отдельной колонией клеток и содержать определ. рекДНК. На заключительном этапе производится идентификация (поиск) клонов, в который заключён нужный ген. Она основывается на том, что вставка в рекДНК детерминирует какое-то уникальное свойство содержащей его клетки (напр., продукт экспрессии встроенного гена). В опытах по молекулярному клонированию соблюдаются 2 основных принципа:

  • ни одна из клеток, где происходит клонирование рекДНК, не должна получить более одной плазмидной молекулы или вирусной частицы;
  • последние должны быть способны к репликации.

В качестве векторных молекул в Г.и. используется широкий спектр плазмидных и вирусных ДНК. Наиболее популярны клонирующие векторы, содержащие несколько генетич. маркеров и имеющие по одному месту действия для разных рестриктаз. Таким требованием, напр., лучше всего отвечает плазмида pBR322, которая была сконструирована из исходно существующей в природе плазмиды с помощью методов, применяемых при работе с рекДНК; она содержит гены устойчивости к ампициллину и тетрациклину, содержит по одному сайту узнавания для 19 разных рестриктаз. Частным случаем клонирующих векторов являются экспрессирующие векторы, которые наряду с амплификацией обеспечивают правильную и эффективную экспрессию чужеродных генов в реципиентных клетках. В ряде случаев молекулярные векторы могут обеспечивать интеграцию чужеродной ДНК в геном клетки или вируса (их называют интегративными векторами).

Одна из важнейших задач Г.и. - создание штаммов бактерий или дрожжей, линий клеток тканей животных или растений, а также трансгенных растений и животных (см. Трансгенные организмы), которые обеспечивали бы эффективную экспрессию клонируемых в них генов. Высокий уровень продукции белков достигается в том случае, если гены клонируются в многокопийных векторах, т.к. при этом целевой ген будет находиться в клетке в большом количестве. Важно, чтобы кодирующая последовательность ДНК находилась под контролем промотора, который эффективно узнаётся РНК-полимеразой клетки, а образующаяся мРНК была бы относительно стабильной и эффективно транслировалась. Кроме того, чужеродный белок, синтезируемый в реципиентных клетках, не должен подвергаться быстрой деградации внутриклеточными протеазами. При создании трансгенных животных и растений часто добиваются тканеспецифичной экспрессии вводимых целевых генов.

Поскольку генетич. код универсален, возможность экспрессии гена определяется лишь наличием в его составе сигналов инициации и терминации транскрипции и трансляции, правильно узнаваемых хозяйской клеткой. Т.к. большинство генов высших эукариот имеет прерывистую экзон-интронную структуру, в результате транскрипции таких генов образуется матричная РНК-предшественник (пре-мРНК), из которой при последующем сплайсинге выщепляются некодирующие последовательности - интроны, и образуется зрелая мРНК. Такие гены не могут экспрессироваться в клетках бактерий, где отсутствует система сплайсинга. Для того чтобы преодолеть это препятствие на молекулах зрелой мРНК с помощью обратной транскриптазы синтезируют ДНК-копию (кДНК), к которой с помощью ДНК-полимеразы достраивается вторая цепь. Такие фрагменты ДНК, соответствующие кодирующей последовательности генов (уже не разделённой интронами), можно встраивать в подходящий молекулярный вектор.

Зная аминокислотную последовательность целевого полипептида, можно синтезировать кодирующую его нуклеотидную последовательность, получив т.н. ген-эквивалент, и встроить его в соответствующий экспрессирующий вектор. При создании гена-эквивалента обычно учитывают свойство вырожденности генетич. кода (20 аминокислот кодируются 61 кодоном) и частоту встречаемости кодонов для каждой аминокислоты в тех клетках, в которые планируется вводить этот ген, т.к. состав кодонов может существенно отличаться у разных организмов. Правильно подобранные кодоны могут значительно повысить продукцию целевого белка в реципиентной клетке.

Значение генетической инженерии

Г.и. значительно расширила экспериментальные границы , поскольку позволила вводить в разл. типы клеток чужеродную ДНК и исследовать её функции. Это позволило выявлять общебиологич. закономерности организации и выражения генетич. информации в разл. организмах. Данный подход открыл перспективы создания принципиально новых микробиологич. продуцентов биологически активных веществ. а также животных и растений, несущих функционально активные чужеродные гены. Мн. ранее недоступные биологически активные белки человека, в т.ч. интерфероны, интерлейкины, пептидные гормоны, факторы крови стали нарабатываться в больших количествах в клетках бактерий, дрожжей или млекопитающих, и широко использоваться в медицине. Более того, появилась возможность искусственно создавать гены, кодирующие химерные полипептиды, обладающие свойствами двух или более природных белков. Все это дало мощный импульс к развитию биотехнологии .

Глвными объектами Г.и. являются бактерии Escherichia coli (кишечная палочка) и Bacillus subtilis (сенная палочка), пекарские дрожжи Saccharomices cerevisiae , разл. линии клеток млекопитающих. Спектр объектов генно-инженерного воздействия постоянно расширяется. Интенсивно развиваются направления исследований по созданию трансгенных растений и животных. Методами Г.и. создаются новейшие поколения вакцин против различных инфекционных агентов (первая из них была создана на основе дрожжей, продуцирующих поверхностный белок вируса гепатита В человека). Большое внимание уделяется разработке клонирующих векторов на основе вирусов мле-копитающих и использованию их для создания живых поливалентных вакцин для нужд ветеринарии и медицины, а также в качестве молекулярных векторов для генной терапии раковых опухолей и наследственных заболеваний. Разработан метод прямого введения в организм человека и животных рекДНК, направляющих продукцию в их клетках антигенов разл. инфекционных агентов (ДНК-вакцинация). Новейшим направлением Г.и. является создание съедобных вакцин на основе трансгенных растений, таких как томаты, морковь, картофель, кукуруза, салат и др., продуцирующих иммуногенные белки возбудителей инфекций.

Опасения, связанные с проведением генно-инженерно экспериментов

Вскоре после первых успешных экспериментов по получению рекДНК группа учёных во главе с П. Бергом предложила ограничить проведение ряда генно-инженерных опытов. Эти опасения основывались на том, что свойства организмов, содержащих чужую генетич. информацию, трудно предсказать. Они могут приобрести нежелательные признаки, нарушить экологич. равновесие, привести к возникновению и распространению необычных заболеваний человека, животных, растений. Кроме того отмечалось, что вмешательство человека в генетич. аппарат живых организмов аморально и может вызвать нежелательные социальные и этические последствия. В 1975 эти проблемы обсуждались на междунар. конференции в Асиломаре (США). Её участники пришли к заключению о необходимости продолжения использования методов Г.и. но при обязательном соблюдении определ. правил и рекомендаций. Впоследствии эти правила, установленные в ряде стран, были существенно смягчены и свелись к приёмам обычным в микробиологич. исследованиях, созданию спец. защитных устройств, препятствующих распространению биологич. агентов в окружающей среде, использованию безопасных векторов и реципиентных клеток, не размножающихся в природных условиях.

Часто под Г.и. понимают только работу с рекДНК, а как синонимы Г.и. используются термины «Молекулярное клонирование», «Клонирование ДНК», «Клонирование генов». Однако все эти понятия отражают содержание лишь отдельных генно-инженерных операций и поэтому не эквивалентны термину Г.и. В России как синоним Г.и. широко используется термин «генная инженерия». Однако смысловое содержание этих терминов различно: Г.и. ставит целью создание организмов с новой генетич. программой, в то время как термин «генная инженерия» поясняет как это делается, т.е. путём манипуляции с генами.

Литература

Щелкунов С.Н. Клонирование генов. Новосибирск, 1986; Уотсон Дж ., Туз Дж ., Курц Д. Рекомбинантные ДНК: Краткий курс. М., 1986; Клонирование ДНК. Методы М., 1988; Новое в клонировании ДНК: Методы М., 1989. Щелкунов С.Н. Генетическая инженерия. 2-е изд., Новосибирск, 2004.